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ABSTRACT
Variational QuantumAlgorithms are hybrid classical-quantum algo-
rithms where classical and quantum computation work in tandem
to solve computational problems. These algorithms create interest-
ing challenges for the design of suitable programming languages.
In this paper we introduce Qimaera, which is a set of libraries for
the Idris 2.0 programming language that enable the programmer to
implement (variational) quantum algorithms where the full power
of the elegant Idris language works in synchrony with quantum pro-
gramming primitives that we introduce. The two key ingredients
of Idris that make this possible are (1) dependent types which allow
us to implement unitary (i.e. reversible and controllable) quantum
operations; and (2) linearity which allows us to enforce fine-grained
control over the execution of quantum operations that ensures com-
pliance with the laws of quantum mechanics. To the best of our
knowledge, this is the first programming language that is suitable
for variational quantum programming in the sense that it provides
first-class high-level support for both classical and quantum pro-
gramming and that is moreover type-safe.
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1 INTRODUCTION
Quantum Computing is a new and emerging computational para-
digm whose main idea is to use quantum mechanical phenomena,
such as entanglement and superposition, in order to perform com-
putation. A quantum computer can solve problems which are out
of reach for classical computers (e.g. factorisation of large num-
bers [26], solving large linear systems [18]) and this has caused
a major surge of interest into the development of quantum tech-
nologies. A major breakthrough was recently achieved by Google
which demonstrated quantum computational advantage on existing
quantum computers [9]. The development of quantum computing
technologies is rapidly accelerating and has recently benefited from
major investment from technological companies with dedicated
quantum research teams, such as Google, Microsoft, IBM, and many
other quantum startup firms. Quantum technologies are also one
of the main focus areas for the European Research Council [6].

Variational Quantum Algorithms [22, 25] are becoming increas-
ingly important for quantum computation. The main idea behind
this computational paradigm is to use hybrid classical-quantum
algorithms that work in tandem to solve computational problems.
The classical part of the algorithm is performed by a classical pro-
cessor and the quantum part of the algorithm is executed on a
quantum device. During the computation process, intermediary
results produced by the quantum device are obtained with proba-
bilities determined by the laws of quantum mechanics, and then
are manipulated by the classical processor, which performs further
computation on them that is used to tune the parameters of the

quantum part of the algorithm, which therefore has an effect on the
quantum dynamics. The hybrid classical-quantum back and forth
process repeats until a satisfactory result has been obtained.

This hybrid classical-quantum computational paradigm opens up
interesting and important challenges for the design of suitable pro-
gramming languages. It is clear that if we wish to program within
such computational scenarios, we need to develop a language that
correctly models the manipulation of quantum resources. In particu-
lar, quantum measurements give rise to probabilistic computational
effects that are inherited by the classical side of the language. An-
other issue that has to be accounted for by a suitable language is
that quantum information behaves very differently from classical
information. As an example, quantum information cannot be copied
in a uniform way [27], unlike classical information, which may be
freely copied without restriction. Therefore, if we wish to avoid
runtime errors, the quantum fragment of the language needs to be
equipped with features for fine-grained control, such as for example,
having a substructural typing discipline [11, 13, 14, 17, 21] where
contraction (i.e. copying) is restricted. On the other hand, when
doing classical computation, such restrictions are unnecessary and
often inconvenient. One solution to this problem is to design a
language with a classical (non-linear) fragment together with a
quantum (linear) one, both of which interact nicely with each other.
In fact, this can be achieved within an existing language that has a
sufficiently advanced type system, as we show in this paper.

1.1 Our Contributions
In this paper, we describe Qimaera (named after the hybrid creature
Chimaera from Greek mythology), which is a set of libraries for the
Idris 2 programming language [15] that allow the programmer to
implement (variational) quantum algorithms in Idris in a type-safe
way. Idris 2 is an elegant functional programming language that
is equipped with an advanced type system based on Quantitative
Type Theory [11, 21] that brings many useful features to the pro-
grammer, most notably dependent types and linearity. These two
features of Idris are crucial for the development of Qimaera and, in
fact, are the reason we chose Idris in the first place (we do not know
of any other language that supports both features simultaneously).
Dependent types are used throughout our entire development in
order to correctly represent and formalise the compositional nature
of quantum operations. Linearity is used in order to enforce the
proper consumption of quantum resources (during execution) in a
way that is admissible with respect to the laws of quantum mechan-
ics. The combination of dependent types and linearity allows us to
statically detect and reject erroneous quantum programs and this
ensures the type-safety of our approach to variational quantum
programming.

In our intended computational scenario, we should have access
to both a classical computer and a quantum computer. Since we
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cannot directly observe quantum information, we directly inter-
act with the classical computer which sends instructions to, and
receives data from, the quantum device via a suitable interface that
makes use of the IO monad. In our view, this is an adequate repre-
sentation of a realistic computational environment for variational
quantum programming. However, since we do not personally have
any quantum hardware, we instead simulate the relevant quantum
operations on our classical computers by using the proper linear-
algebraic formalism, but while still using an IO monad to accurately
generate probabilistic effects as prescribed by quantum mechan-
ics. From a high-level programming perspective, the simulation
approach addresses the same programming challenges that arise
from the realistic classical-quantum device scenario.

We emphasise that we can achieve type-safe (variational) quan-
tum programming in an existing classical programming language
by implementing suitable libraries. This is important for variational
quantum programming, because in most variational quantum al-
gorithms, the classical part of the algorithm is considerably larger,
more complicated and more difficult to implement, compared to
the quantum part of the algorithm. Therefore, it is important for
the programming language to have good support for classical pro-
gramming features. Our chosen language, Idris, is definitely such a
language. The advanced type system of Idris allows us to elegantly
mix quantum and classical programming primitives and therefore
allows us to get the best of both worlds. To showcase this, we imple-
ment several (variational) quantum algorithms and we show that
(high-level) quantum and classical computation live in synchrony
within Idris and may be mixed in an elegant way.

To the best of our knowledge, our paper describes the first lan-
guage that is suitable for variational quantum programming in the
sense that it provides first-class high-level support for both classical
and quantum programming and that is moreover type-safe.

1.2 Overview
The paper is organised as follows:

• We begin by providing some background on quantum com-
putation (§2.1) and the Idris programming language (§2.2).

• We then explain how we represent unitary (i.e. reversible
and controllable) quantum operations in Idris and we pro-
vide some important and non-trivial examples (§3). We do
not make use of linearity in order to achieve this, but our
development makes extensive use of dependent types.

• In §4 we describe how we represent arbitrary (non-unitary,
effectful) quantum operations and we present some simple
examples of effectful quantum programs and algorithms. The
linear features of Idris are crucial for achieving this.

• We discuss why Qimaera is suitable for variational quantum
programming and we provide a prototype implementation
of the Variational Quantum Eigensolver algorithm in §5.

• Finally, we discuss related work in §6 and we provide con-
cluding remarks in §7.

The Idris source code for Qimaera is on Github at the following
URL: https://github.com/zamdzhiev/Qimaera. It is licensed under
the MIT license and it may be freely used by anyone.

2 BACKGROUND
In this section we introduce the relevant background and we fix
notation so that readers may follow our subsequent development.

2.1 Quantum Computation
Readers interested in a detailed introduction to quantum computing
may consult [23]. In this section we summarise the basic notions
that are relevant for our development.

2.1.1 Qubits. The simplest non-trivial quantum system is the quan-
tum bit, often abbreviated as qubit. Qubits are of fundamental im-
portance in quantum computation and quantum information and
they may be thought of as the quantum counterparts of the bit from
classical computation. A qubit |𝜓 ⟩ is represented as a normalised
vector in C2 . The computational basis is given by the pair of vectors

|0⟩ def
=

(
1
0

)
and |1⟩ def

=

(
0
1

)
,

which may be seen as representing the classical bits 0 and 1. An
arbitrary qubit can therefore be described by |𝜓 ⟩ = 𝑎 |0⟩ +𝑏 |1⟩ with
𝑎, 𝑏 ∈ C and |𝑎 |2 + |𝑏 |2 = 1.

2.1.2 Superposition. A qubit may be in (uncountably) many differ-
ent states, whereas a classical bit is either 0 or 1. When the linear
combination |𝜓 ⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ is non-trivial, then we say that |𝜓 ⟩
is in superposition of |0⟩ and |1⟩. Superposition is a very important
quantum resource which is used by many quantum algorithms.

2.1.3 Composite Systems. The state space that describes a system
of 𝑛 qubits is the Hilbert space C2

𝑛
. Notice that the dimension of

the state space grows exponentially with the number of qubits. If
|𝜓 ⟩ and |𝜙⟩ are two states of 𝑛 and𝑚 qubits respectively, then the
composite 𝑛 +𝑚 qubit state |𝜓𝜙⟩ def

= |𝜓 ⟩ ⊗ |𝜙⟩ is described by the
Kronecker product ⊗ of the original states.

2.1.4 Unitary Quantum Operations. A quantum state |𝜓 ⟩ ∈ C2𝑛

may undergo a unitary evolution described by a unitary matrix
𝑈 ∈ C2𝑛×2𝑛 in which case the new state of the system is described
by the vector𝑈 |𝜓 ⟩ . Unitary operations (and matrices) are closed
under sequential composition (described by matrix multiplication ◦)
and under parallel composition (described by Kronecker product ⊗
). Sequential composition of unitary operations is used to describe
the temporal evolution of quantum systems, whereas the parallel
composition is used to describe the action of several unitary trans-
formations acting simultaneously on different parts of composite
quantum systems.

The unitary quantum operations are also often called unitary
gates. One typically chooses a universal gate set which is a small
set of unitary operations that suffices to express all other unitary
operations via (parallel and sequential) composition. The universal
gate set that we choose for our development is standard and we
specify these unitary operations next by giving their action on the
computational basis (which uniquely determines the operations).

TheHadamard Gate, denoted𝐻 , is the 1-qubit unitarymapwhose
action on the computational basis is given by

𝐻 |0⟩ = 1
√
2
( |0⟩ + |1⟩) 𝐻 |1⟩ = 1

√
2
( |0⟩ − |1⟩)

https://github.com/zamdzhiev/Qimaera
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𝐻 𝑃 (𝛼)

Figure 1: The Hadamard, Phase Shift and CNOT gates.

𝐻 𝑇 † 𝑇 𝑇 † 𝑇 𝐻

𝑇 𝑇 †

𝑇

Figure 2: The Toffoli gate.

and its primary purpose is to generate superposition. The Phase
Shift Gate, denoted 𝑃 (𝛼), for 𝛼 ∈ R, is a 1-qubit unitary map whose
action on the computational basis is given by:

𝑃 (𝛼) |0⟩ = |0⟩ 𝑃 (𝛼) |1⟩ = 𝑒𝑖𝛼 |1⟩

and its primary purpose is to modify the phase of a quantum state.
The family of Phase Shift Gates is parameterised by the choice
of 𝛼 ∈ R and important special cases include the unitary gates
𝑇

def
= 𝑃 (𝜋/4) and 𝑍 def

= 𝑃 (𝜋) . The Controlled-Not Gate (CNOT), is a
2-qubit unitary map whose action on the computational basis is
given by

CNOT |00⟩ = |00⟩ CNOT |01⟩ = |01⟩
CNOT |10⟩ = |11⟩ CNOT |11⟩ = |10⟩

and this unitary map may be used to generate quantum entangle-
ment (see §2.1.7).

Unitary gates admit a diagrammatic representation as quantum
circuits. The atomic unitary gates we described above are shown in
Figure 1. Composite unitary gates may also be described as circuits
(see Figure 2): sequential composition amounts to plugging wires
of subdiagrams left-to-right and parallel composition amounts to
juxtaposition of circuits top-to-bottom.

2.1.5 Controlled Unitary Operations. The CNOT gate is the sim-
plest example of a controlled unitary gate. Given a unitary gate
𝑈 : C2

𝑛 → C2𝑛 , the controlled-𝑈 unitary gate is the unitary gate
𝐶𝑈 : C2

𝑛+1 → C2𝑛+1 whose action is determined by the assignments

𝐶𝑈 ( |0⟩⊗|𝜓 ⟩) = |0⟩⊗|𝜓 ⟩ and 𝐶𝑈 ( |1⟩⊗|𝜓 ⟩) = |1⟩⊗(𝑈 |𝜓 ⟩).

Controlled unitary operations are ubiquitous in quantum comput-
ing and they are graphically depicted as

𝑈

using a similar notation to that of the CNOT gate.

2.1.6 Inverse Unitary Operations. Every unitary operation 𝑈 is
reversible with the inverse operation given by the conjugate trans-
pose, denoted 𝑈 †, which is again a unitary matrix. Applying the
inverse operation (also known as the adjoint) of a given unitary is
also ubiquitous in quantum computing.

𝐻|0⟩

|0⟩

Figure 3: Preparation of the Bell state using atomic gates.

2.1.7 Quantum Entanglement. A quantum state |𝜓 ⟩ ∈ C2𝑛 , with
𝑛 > 1, is said to be entangled when there exists no non-trivial
decomposition |𝜓 ⟩ = |𝜙⟩ ⊗ |𝜏⟩. Quantum entanglement is a very
important resource in quantum computation which is exhibited
by many quantum algorithms. Because of the possibility of en-
tanglement, we cannot, in general, break down quantum systems
into smaller components and we are often forced to reason about
such systems in their entirety. The most important example of an
entangled state is the Bell state given by |Bell⟩ def

=
|00⟩+ |11⟩√

2
.

2.1.8 Preparation of Quantum States. Preparing a new qubit in
state |0⟩ is an admissible physical operation. This, together with
application of unitary gates as part of the computation, allows us
to prepare arbitrary quantum states. For example, the Bell state can
be prepared by taking |Bell⟩ = (CNOT ◦ (𝐻 ⊗ 𝐼 )) |00⟩. See Figure 3
for a diagrammatic representation. Notice that the circuit in Figure
3 is applied to the initial state |00⟩ and therefore describes a state,
whereas the circuits in Figures 1 and 2 are unitary operations and
do not describe states, because no input state is specified.

2.1.9 Measurements. Quantum information cannot be directly ob-
served without affecting the state of the underlying system. In
order to extract information from quantum systems, we need to
perform a quantum measurement on (parts of) our systems. For
example, when performing a quantum measurement on a qubit in
the state |𝜓 ⟩ = 𝑎 |0⟩ + 𝑏 |1⟩, there are two possible outcomes: either
the quantum system will collapse to state |0⟩ and we obtain the
classical bit 0 as evidence of this event, or, the quantum system will
collapse to state |1⟩ and we obtain the classical bit 1 as evidence of
this event. The first outcome (corresponding to bit 0) occurs with
probability |𝑎 |2 and the second outcome (corresponding to bit 1)
occurs with probability 1− |𝑎 |2 = |𝑏 |2 . In general, when we measure
𝑛 qubits simultaneously, we obtain a bit string of length 𝑛 which de-
termines the event that occurred and the quantum system collapses
to a corresponding state with some probability, both of which are
determined via the Born rule of quantum mechanics. Therefore,
quantum measurements induce evolutions which are probabilis-
tic and irreversible (or destructive), which distinguishes them from
unitary evolutions, which are deterministic and reversible.

2.1.10 No-Cloning Theorem. Unlike classical information, quan-
tum information cannot be uniformly copied. This is made precise
by the no-cloning theorem of quantum mechanics [27]: there exists
no unitary operation𝑈 : C4 → C4, such that for every qubit |𝜓 ⟩ :

𝑈 ( |𝜓 ⟩ ⊗ |0⟩) = |𝜓 ⟩ ⊗ |𝜓 ⟩ .

This means that copying of quantum information is a physically in-
admissible operation. Therefore, quantum programming languages
should be designed so that these kinds of errors are detected by the
language, ideally during type checking and not at runtime.
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2.2 The Idris Language
In this section, we give a short overview of the Idris 2 program-
ming language and its most crucial features for the development of
Qimaera.

Idris 2 is a pure functional language with a syntax influenced by
that of Haskell. It introduces two powerful constructions, linearity
and dependent types, that are the cornerstone of our implementa-
tion of quantum primitives.

2.2.1 Dependent Types. In Idris, types can be manipulated like
any other construct of the language. This allows to have more
expressive types that can depend on a value, and hence it enables
to make some properties and program invariants explicit. The type
of vectors is the most common example of a dependent type: a
vector is a list with a fixed length, which is part of its type. It can
be declared as follows, where 𝑆 is the constructor for the successor
of a natural number, and 𝑎 is a polymorphic type:
data Vect : Nat -> Type -> Type where

Nil : Vect 0 a

(::) : a -> Vect k a -> Vect (S k) a

Here, the type Vect has two constructors. The first one constructs
the empty vector, of length zero. The second one constructs all non-
empty vectors: a vector of size 𝑘 + 1 with elements of type 𝑎 is
obtained by combining an element of type 𝑎 and a vector of size 𝑘 .

Some correctness and mathematical properties are then ensured
during type-checking. For instance, we can define an append func-
tion that concatenates two vectors. In this case, the size of the
output vector is the sum of the sizes of the input vectors.
append : Vect n a -> Vect m a -> Vect (n + m) a

If we make a mistake in the definition, for example if we forget the
recursive call, an error will be raised at type-checking.
append : Vect n a -> Vect m a -> Vect (n + m) a

append [] ys = ys

append (x::xs) ys = x::ys

Error: While processing right hand side of append.

Can 't solve constraint between: m and plus k m.

Type dependency may also be used to express some constraints
on the parameters of a function. Here, we write a pop function that
cannot be applied to an empty vector.
pop : Vect (S k) a -> Vect k a

pop (x :: xs) = xs

Writing pop [ ] will fail at compile time rather than at runtime.
However, using dependent types makes type-checking undecid-

able. Indeed, the equivalence between types has sometimes to be
proved inside the code. This is the case, for example, for the types
Vect (n + k) Nat and Vect (k + n) Nat: the compiler needs a
proof that addition is commutative to unify these types.

2.2.2 Linearity. The type system of Idris 2 is based on Quantita-
tive Type Theory. Every function argument is associated with a
multiplicity that states the number of times the variable is used
at runtime. This multiplicity can be 0, 1 or 𝜔 . A parameter with
a multiplicity 0 is only used at compile time and is erased at run-
time. A linear argument, with multiplicity 1, is used exactly once at

runtime. If the argument is a variable, it is used when it is pattern
matched against, and if it is a function, it is used when it is run.
Finally, the multiplicity 𝜔 , the default one, means that the usage of
the argument is unrestricted.

In Qimaera, when manipulating quantum information, linearity
will be enforced in order to consume properly quantum resources
and comply with the no-cloning theorem.

In our libraries, we define the data type LVect (which stands
for linear vector). The definition is similar to that of Vect, but the
parameters of the constructor are linear (linearity is specified with
the multiplicity 1 in front of each argument). We also use the linear
pairs (LPair) that are already defined in Idris 2.

data LVect : Nat -> Type -> Type where

Nil : LVect 0 a

(::) : (1 _ : a) -> (1 _ : LVect k a) ->

LVect (S k) a

data LPair : Type -> Type -> Type

(#) : (1 _ : a) -> (1 _ : b) -> LPair a b

We can illustrate linearity with the standard example of the dupli-
cation function. In this function, we are trying to use twice a linear
resource, and an error is reported at compile time.

duplication : (1 _ : a) -> LPair a a

duplication x = x # x

Error: While processing right hand side of

duplication. There are 2 uses of linear name x.

3 UNITARY GATES IN QIMAERA
As we saw in §2.1, unitary transformations have a special role in
quantum computation. In fact, in most non-variational quantum
algorithms, the vast majority of the programming effort consists
in implementing the required unitary gates. In this section, we de-
scribe our representation of unitaries transformations in Qimaera.

3.1 The Unitary Data Type
Quantum unitary operations admit a compositional and algebraic
representation based on the gates from the universal gate set. Our
idea for the representation of quantum unitaries is based on this,
and more specifically, on how quantum unitaries may be expressed
in terms of quantum circuit diagrams. Because of these reasons,
linearity is not required for our formalisation of quantum unitaries.

Our reasoning above shows that quantum unitary operations
may be represented as an algebraic data type within Idris. The
code which does this is listed in Figure 4 and we now describe this
formalisation in greater detail.

Given a natural number n : Nat, the type of quantum unitaries
acting on n qubits is given by Unitary n. Therefore Unitary is
an algebraic data type with a simple type dependency on the ar-
ity of the desired operation. The Unitary type has four different
introduction rules which we describe next.

The first constructor, IdGate, represents the identity unitary
on n qubits. We can see this as constructing a circuit of n wires,
without any other unitary gates applied on any of the wires. Its
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data Unitary : Nat -> Type where

IdGate : {n : Nat} -> Unitary n

H : {n : Nat} -> (j : Nat) ->

{auto prf : (j < n) = True} ->

Unitary n -> Unitary n

P : (p : Double) ->

{n : Nat} -> (j : Nat) ->

{auto prf : (j < n) = True} ->

Unitary n -> Unitary n

CNOT : {n : Nat} -> (c : Nat) -> (t : Nat) ->

{auto prf1 : (c < n) = True} ->

{auto prf2 : (t < n) = True} ->

{auto prf3 : (c /= t) = True} ->

Unitary n -> Unitary n

Figure 4: The Unitary data type

only argument, n, is an implicit argument – it can be omitted when
calling the constructor and it will be often inferred by Idris.

The second constructor, H, should be understood as applying the
Hadamard gate 𝐻 to the j-th wire of some previously constructed
unitary gate which is specified as the last argument. The first im-
plicit argument, n, is simply the arity of the resulting unitary gate.
The second implicit argument, prf, is a proof obligation that j
is smaller than n. This ensures that the argument j identifies an
existing wire of the previously constructed unitary (last argument)
and therefore the overall definition is algebraically and physically
sound. We note that the implicit argument prf may be removed
from our implementation if we change the type of j to Fin n, the
type of integers less than n. However, in our experience, Idris has
better support for Nat than for Fin and for this reason we chose to
keep the prf argument.

The third constructor, P, should be viewed as applying the 𝑃 (𝑝)
gate, where the real number 𝑝 ∈ R is approximated by the term p
: Double.1 The remaining arguments serve the same purpose as
those for H.

The fnal constructor, CNOT, should be understood as applying
the CNOT gate, where c identifies the wire used for the control (the
small black dot in Figure 1), t identifies the wire of the target (the
crossed circle in Figure 1) and the last (unnamed) argument is the
previously constructed unitary circuit on which we are applying
CNOT. The remaining arguments are implicit and often do not
have to be provided by the users: the argument n is the arity of
the unitary; prf1 and prf2 ensure that c and t identify valid wires
of the unitary circuit; prf3 ensures that the control and target
wires are distinct and therefore the overall application of CNOT is
physically admissible.

In our representation of quantum unitary gates, we make use of
the dependently-typed features of Idris to impose proof obligations
on some of our constructors in order to guarantee that the rep-
resentation makes sense in physical and algebraic terms. On first
glance, this might seem like a big burden for the users of the library.

1This approximation is not a serious limitation – in fault-tolerant quantum computing
one usually replaces the 𝑃 (𝑝) gate family with a single 𝑇 = 𝑃 (𝜋/4) gate and the
resulting gate set suffices to approximate any unitary with arbitrary precision. So we
may replace the P constructor with a simple T constructor.

However, in our experience Idris can often automatically discover
the required proofs (without any assistance from the user) and we
had to do very little manual theorem proving. This is discussed in
detail in the next subsection.

3.2 Constructing Unitary Transformations
The Unitary type from Figure 4 comes equipped with four basic in-
troduction rules that allow us to define high-level functions in Idris
that can be used to construct complex unitary gates out of simpler
ones. We discuss this here and we show that the proof obligations
from Figure 4 are not severe and can be easily ameliorated.

First, we point out that auto-implicit arguments may often be
inferred by Idris via suitable search. For example, if all the argu-
ments are known statically, the required proofs will be discovered
by Idris and the users do not have to manually provide them.

Example 3.2.1. The unitary gate depicted in the circuit from Fig-
ure 3 may be constructed in the following way:

toBellBasis : Unitary 2

toBellBasis = CNOT 0 1 (H 0 IdGate)

In this example, Idris is able to infer all the implicit arguments and
there is no need to provide any proofs. If we do not satisfy one of
the constraints, for example if we write CNOT 1 1 above (which
does not make physical sense), then we get the following error
during type checking:

Error : While processing right hand side of

toBellBasis. Can 't find an implementation for

not (== 1 1) = True.

An error is also reported if we provide a wire number larger than 1.

It is also useful to define standalone unitary gates (not algebraic
type constructors) for the 𝐻, 𝑃 (𝑟 ) and CNOT gates as follows:

HGate : Unitary 1

HGate = H 0 IdGate

PGate : Double -> Unitary 1

PGate r = P r 0 IdGate

CNOTGate : Unitary 2

CNOTGate = CNOT 0 1 IdGate

3.2.1 Composing Unitary Gates. Our libraries provide functions
for sequential composition (compose) and parallel composition
(tensor) of unitary gates and they have the following types:

compose : Unitary n -> Unitary n -> Unitary n

tensor : {n : Nat} -> {p : Nat} ->

Unitary n -> Unitary p -> Unitary (n + p)

Notice that both functions do not impose any proof obligations on
the user. This means that the primary algebraic way of composing
unitary transformations may be done in Qimaera without any need
for theorem proving.

Example 3.2.2. The toBellBasis gate from Example 3.2.1 may
be equivalently expressed in the following way:
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toBellBasis : Unitary 2

toBellBasis = CNOTGate `compose `

(HGate `tensor ` IdGate)

However, there are situations where the two functions above do
not suffice. For instance, this can occur if we are given a unitary
circuit 𝐷 on 𝑛 qubits and we wish to apply another unitary gate𝑈
on 𝑘 ≤ 𝑛 qubits to a set of the wires of 𝐷 which are not consecutive
but separated by some wires. For this reason, Qimaera provides the
function apply whose type is as follows:

apply : {i : Nat} -> {n : Nat} ->

Unitary i -> Unitary n ->

(v : Vect i Nat) ->

{auto _ : isInjective n v = True}

The apply function is used to apply a smaller unitary gate of size
i to a bigger one of size n, giving the vector v of wire indices on
which we wish to apply the smaller gate. It needs one auto-implicit
proof which enforces the consistency requirement that all indices
of the wires specified by v are pairwise distinct and smaller than n.

In fact, the apply function implements the most general notion
of composition and both sequential and parallel composition can be
realised as special cases using it. The importance of the vector v is
that it determines how to apply the smaller unitary gate of arity i to
any selection of i wires of the larger unitary circuit, and moreover,
it also allows us to permute the inputs/outputs of the smaller unitary
gate while doing so. More specifically, if the 𝑘-th entry of the vector
v is the natural number 𝑝 , then the 𝑘-th input/output of the smaller
unitary gate will be applied to the 𝑝-th wire of the larger unitary
circuit. This is best understood by example.

Example 3.2.3. Consider the following code sample:

U : Unitary 3

U = HGate `tensor ` IdGate `tensor ` (P pi)

apply_example : Unitary 3

apply_example = apply toBellBasis U v

where v is a vector of length two. Here toBellBasis is given in
Example 3.2.1 and represents the circuit given below left and U
represents the circuit given below right:

𝐻

𝑃 (𝜋)

𝐻

Table 1 shows what unitary gate is specified under different values
of v. In these examples, Idris can automatically infer the required
proofs and the user does not have to provide them.

Remark 3.2.4. Instead of using apply, there is another possible
approach, in the spirit of symmetric monoidal categories [20, §XI],
where we could add one extra introduction rule to the Unitary type
in Figure 4 for representing permutations of wires. However, in our
view, this approach is somewhat awkward, because one does not
usually think of permutations (induced by the symmetric monoidal
structure) as physical gates.

apply toBellBasis U [0,1]
𝐻𝐻

𝑃 (𝜋)

apply toBellBasis U [0,2]
𝐻𝐻

𝑃 (𝜋)

apply toBellBasis U [2,0]

𝐻𝑃 (𝜋)

𝐻

apply toBellBasis U [2,1]

𝐻𝑃 (𝜋)

𝐻

Table 1: Examples illustrating the apply function.

3.2.2 Adjoints of Unitary Gates. Qimaera also provides a function
adjoint : Unitary n -> Unitary n

which computes the adjoint (i.e. inverse) of a given unitary gate.
As explained previously, one often has to apply the inverse of a
given unitary gate, so having a high-level method such as this is
useful. Our implementation uses the obvious algorithm for synthe-
sising the adjoint. This may be used, for example, to automatically
uncompute operations that we perform on ancilla qubits, which is
often required by many quantum algorithms.

3.2.3 Controlled Unitary Gates. We also implement a function
controlled : {n : Nat} -> Unitary n ->

Unitary (S n)

which given a unitary gate 𝑈 constructs the corresponding con-
trolled unitary gate. Our implementation uses the obvious algo-
rithm for doing this, but more sophisticated algorithms may also
be implemented in the future.

3.2.4 Optimisation of Unitary Gates. Unitary gates are represented
in a scalable and compositional way in Qimaera. It is therefore
possible to use Idris to define an optimisation function
optimise : Unitary n -> Unitary n

which optimises a given (very large) unitary gate with respect
to some criterion. We have not done this yet, because this is not
the focus of our work. The point we wish to make is that unitary
gates in Qimaera may be analysed and manipulated like any other
algebraic data type using the full capabilities of Idris.

3.3 Example: The Quantum Fourier Transform
The Quantum Fourier Transform (QFT) is a unitary transformation
which may be seen as the quantum analogue of the classical Dis-
crete Fourier Transform. This is a very important unitary operator
and it is used in Shor’s algorithm for integer factorisation. The
unitary circuit which realises QFT on 𝑛 qubits is shown in Figure 5,
where 𝑅𝑛

def
= 𝑃

(
2𝜋
2𝑛

)
. The Qimaera code which realises this unitary
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𝐻 𝑅2 𝑅3 ... 𝑅𝑛−1 𝑅𝑛

𝐻 𝑅2

...

...

...

...

...

𝐻 𝑅2

𝐻

Figure 5: The QFT unitary gate on 𝑛 qubits.

Rm : Nat -> Unitary 1

Rm m = let m' = cast m

in PGate (2 * pi / (pow 2 m'))

cRm : Nat -> Unitary 2

cRm m = controlled (Rm m)

recursivePattern : (n : Nat) -> Unitary n

recursivePattern 0 = IdGate

recursivePattern 1 = HGate

recursivePattern (S (S k)) =

let t = tensor (recursivePattern (S k)) IdGate

in rewrite sym $ lemmaplusOneRight k

in apply (cRm (S k)) t [S k,0]

{prf = lemmaInj1 k}

qft : (n : Nat) -> Unitary n

qft Z = IdGate

qft (S k) =

let g = recursivePattern (S k)

h = tensor (IdGate {n = 1}) (qft k)

in compose h g

Figure 6: Qimaera code for QFT.

gate is shown in Figure 6. Notice that here we make use of the
controlled function from §3.2.3 in the function cRm, so that we
can automatically implement the many controlled 𝑅𝑛 gates that
are required for the QFT gate. The required recursive pattern and
recursive calls are easily expressed within Idris.

In this example, all the parameters are universally quantified,
so we need a few very short proofs inside the code for using the
apply function and one for correctly unifying the size of the circuit.
These proofs are shown (in their entirety) in Figure 7 and they are
very easy and simple. These proofs state the following simple facts
(when translated mathematically): (1) ∀𝑘 ∈ N.𝑘 < 𝑘 + 1; (2) if 𝑎
is true and 𝑏 is true, then 𝑎&𝑏 is true; (3) ∀𝑘 ∈ N.𝑘 + 1 ≠ 0; (4)
∀𝑛 ∈ N.𝑛 + 1 = 𝑆 (𝑛), where 𝑆 is the successor function. Currently
Idris cannot automatically discover these proofs, but we hope in
the future its capabilities for proof search would improve to the
point where it could. If this happens, then the users would not have
to manually provide these proofs.

kLTSucc1 : (k : Nat) -> k < (k + 1) = True

kLTSucc1 0 = Refl

kLTSucc1 (S k) = kLTSucc1 k

lemmaAnd : {a : Bool} -> {b : Bool} ->

(a = True) -> (b = True) ->

(a && b = True)

lemmaAnd {a = True} {b = True} p1 p2 = Refl

lemmaInj1 : (k : Nat) ->

isInjective (S (k + 1)) [S k, 0] = True

lemmaInj1 k = let p1 = kLTSucc1 k

in lemmaAnd (lemmaAnd p1 Refl) Refl

lemmaplusOneRight : (n : Nat) -> n + 1 = S n

lemmaplusOneRight n =

rewrite plusCommutative n 1 in Refl

Figure 7: All the lemmas needed for the QFT function

4 EFFECTFUL QUANTUM COMPUTATION
In the previous section we showed how unitary gates are repre-
sented in Qimaera. This suffices to capture the pure, deterministic
and reversible fragment of quantum computation. However, as we
explained in §2.1, we need to consider effectful, probabilistic and
irreversible quantum processes (e.g. measurements) in order to re-
cover the full power of quantum computation. In this section we
show how this is implemented in Qimaera. In particular, we make
heavy use of monads, linearity and dependent types in order to
achieve this is a type-safe way.

Remark 4.0.1. As we mentioned in §1, since we do not personally
have access to quantum hardware, all the quantum operations are
simulated using the linear-algebraic representation of quantum
states. However, from a high-level programming point of view, we
believe our implementation addresses the same problems as the
more realistic quantum-classical device scenario, which also uses
the IO monad.

4.1 Representation of Quantum States
We now explain how the quantum program dynamics are repre-
sented in Qimaera in a type-safe way. We are (roughly) inspired by
representing the notion of a quantum configuration as it appears in
[19, 24], which is in turn used to formally describe the operational
semantics of quantum type systems.

4.1.1 Qubits in Qimaera. Because of the possibility of quantum
entanglement (see §2.1.7), we cannot describe the state of an indi-
vidual qubit which is part of a larger composite system – we have
to describe the state of the entire system. On the other hand, we
wish to be able to refer to parts of the whole system by identifying
specific qubit positions. In Qimaera, we introduce the following
type declaration:

data Qubit : Type where

MkQubit : (n : Nat) -> Qubit
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The argument of type Nat is used as a unique identifier for the
constructed qubit. The constructor MkQubit is private and users of
our libraries cannot access it. Instead, our libraries provide functions
(discussed later) that ensure that terms of type Qubit are always
created with a fresh (i.e. unique) natural number that serves as its
identifier. In fact, these functions are the only way users can access
or manipulate qubits and, moreover, our users cannot access these
unique identifiers. This allows us to formulate a representation
where terms of type Qubit unambiguously refer to the relevant
parts of larger composite systems. Therefore, a term of type Qubit
should be understood as a pointer, or as a unique identifier, of a
1-qubit subsystem of some larger quantum state. Terms of type
Qubit should not be understood as representing any sort of state,
because they do not carry such information.

4.1.2 Quantum States in Qimaera. We represent quantum states
in Qimaera via the following code:

data QuantumState : Nat -> Type where

MkQuantumState : {n : Nat} ->

Matrix (power 2 n) 1 ->

Vect n Nat -> Nat ->

QuantumSTate n

The constructor is private and users cannot access it. Because of
this, quantum states may be only be created and manipulated by
a few functions that we provide and discuss later. The argument
n is the number of qubits of the quantum state; the argument of
type Matrix is a linear-algebraic column vector that describes the
quantum state; the third argument contains the qubit identifiers
and their positions in the quantum state; the final argument of type
Nat represents the highest qubit identifier seen so far, and we use
it to ensure that newly created qubits have unique identifiers.

4.1.3 Probabilistic Effects. As we discussed in §2.1.9, quantummea-
surements induce probabilistic computational effects which are
inherited by the classical language. In order to incorporate these
probabilistic effects, we follow the standard approach and use the
IO monad. Furthermore, the use of the IO monad is also necessary
in the more realistic classical-quantum device scenario.

Example 4.1.1. A monadic program which generates a random
number, prints it on the screen, and then returns it as a result is
given below:

printRandomNumber : IO Double

printRandomNumber = do

nb <- randomIO ()

putStrLn (show nb)

pure nb

However, when representing quantum program dynamics, we
also require linearity, but all the functions provided by the IOmonad
(e.g. pure) are not linear in any of their arguments. This creates
a problem which may be solved by using the LIO library, which
extends the IO monad with linearity. For more simplicity, we define
R to be our linear IO monad:

R : Type -> Type

R = L IO {use = Linear}

data QStateT : Type -> Type -> Type -> Type where

MkQST :

(1 _ : (1 _ : initialType) ->

R (LPair finalType returnType )) ->

QStateT initialType finalType returnType

runQStateT : (1 _ : initialType) ->

(1 _ : QStateT initialType finalType

returnType) ->

R (LPair finalType returnType)

pure : (1 _ : a) -> QStateT t t a

(>>=) : (1 _ : QStateT i m a) ->

(1 _ : ((1 _ : a) -> QStateT m o b)) ->

QStateT i o b

QuantumOp : Nat -> Nat -> Type -> Type

QuantumOp n m t =

QStateT (QuantumState n) (QuantumState m) t

Figure 8: The type of (effectful) quantum operations.

Then, by using R we can combine IO effects (and thus also proba-
bilistic effects) and linearity in a suitable way.

4.1.4 Quantum States and Effects. Quantum computation is effect-
ful and as we saw in §2.1 it depends on quantum states. Because of
this, we define a quantum state transformer by combining several
different concepts: indexed state monads [10]2, linearity and IO (and
thus also probabilistic) effects. Our representation of these ideas in
Qimaera is shown in Figure 8, where we omit some of the function
definitions for brevity.

The type of biggest interest is the type QuantumOp n m t, which
should be understood as a quantum operation from n qubits to m
qubits which also produces a value of type t as a result to the user.
This type allows us to specify (in Qimaera) all quantum operations
that we need to recover full effectful quantum computation. In
Figure 9, we show how the most important quantum operations
are represented in Qimaera.

The function newQubits is used to prepare p new qubits in state
|0⟩ and the function returns a linear vector of length p with the
qubit identifiers of the newly created qubits.

The function applyUnitary is used to apply a unitary operation
of arity i to the qubits specified by the argument LVect (which
also determines the order of application) and the operation returns
an LVect which serves the same purpose – it identifies the qubits
which were just modified by the unitary operator.

The measure function is used to measure i qubits identified by
the LVect argument and it returns a (non-linear) value of type Vect
i Bool that represents the result of the measurement.

Finally, the function run is used to run or to execute quantum
operations (on the quantum device) which start and finish with
the trivial quantum state (on zero qubits) and which produce some
number of classical bits as a return result. This may be used to run
2See [2] for a Haskell implementation of this idea.
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newQubits : (p : Nat) ->

QuantumOp n (n+p) (LVect p Qubit)

applyUnitary : {n : Nat} -> {i : Nat} ->

(1 _ : LVect i Qubit) -> Unitary i ->

QuantumOp n n (LVect i Qubit)

measure : {n : Nat} -> {i : Nat} ->

(1 _ : LVect i Qubit) ->

QuantumOp (n+i) n (Vect i Bool)

run : QuantumOp 0 0 (Vect n Bool) ->

IO (Vect n Bool)

Figure 9: Effectful quantum operations.

quantum algorithms: in a typical situation, we start with the trivial
quantum state (on zero qubits), we prepare 𝑛 qubits in state |0⟩, we
apply some unitary operations on them, and we finally measure all
the qubits, thereby destroying all the qubits and producing 𝑛 bits of
classical information. This quantum algorithm is then represented
as a value of type QuantumOp 0 0 (Vect n Bool). Running it,
however, produces a classical value of type IO (Vect n Bool),
because the execution is probabilistic and because our classical
computer (on which we are running Idris) has to perform IO actions
to communicate with the quantum device.

In fact, all of the above operations implicitly modify quantum
state and may cause IO effects, because of the need to communicate
with the quantum device. This is indeed reflected by our implemen-
tation. Observe, that QuantumOp is defined in terms of the QStateT
monad transformer which does incorporate IO effects (via the R
monad we discussed previously).

The two following examples are small functions that use the
QStateT monad.

quantumOperation : QuantumOp 0 2 (LVect 2 Qubit)

quantumOperation = do

[q1 ,q2] <- newQubits 2

[s1] <- applyUnitary [q1] HGate

[r1 ,r2] <- applyUnitary [s1,q2] CNOTGate

pure [r1 ,r2]

quantumOperation2 : (1 _ : LVect 2 Qubit) ->

QuantumOp 2 2 (LVect 2 Qubit)

quantumOperation2 [q1,q2] = do

[s1] <- applyUnitary [q1] HGate

[r1 ,r2] <- applyUnitary [s1,q2] CNOTGate

pure [r1 ,r2]

In this example, as indicated by the type of quantumOperation,
we are performing a quantum operation from a state with no qubits
to a state with two qubits. The user is returned a linear vector of
two qubit pointers. Indeed, the function creates two qubits, applies
some circuits on them, and returns their pointers. For the second
function, quantumOperation2, we operate on a quantum state with
already two qubits. Their pointers are given as input.

𝑏1

𝑏2

|𝜓 ⟩

|𝜓 ⟩
|0⟩
|0⟩

𝐻

𝐻 meas
meas

𝑍𝑏1 𝑋𝑏2

Figure 10: The teleportation protocol.

We provide the user with a run function which initializes a
quantum state with no qubits, runs all operations within the State
monad and finally discards the context once all qubits have been
measured. Within this run function, the user is enforced to use only
linear operations with quantum states and qubit pointers. We can
for example run the previous functions :
run_example : IO (Vect 2 Bool)

run_example = run

(do

[q1,q2] <- quantumOperation

[r2,r1] <- quantumOperation2 [q2,q1]

measure [r1,r2]

)

If we try to copy a qubit, or if we do not declare the qubits
pointers to be linear in our functions, an error is raised by the
compiler because the program does not comply with linearity :
linearity_example : IO (Vect 2 Bool)

linearity_example = run

(do

[q1,q2] <- newQubits

measure [q2,q2]

)

>> Error

While processing right hand side of

linearity_example. There are 2 uses

of linear name q2

4.2 Example : The Quantum Teleportation
Protocol

In this section, we describe a first simple algorithm : the quantum
teleportation protocol [12, 23]. It is used to transport quantum infor-
mation, typically a qubit, from one place to another (see Figure 10).
All the parameters are known statically. The interesting part is the
interaction between classical and quantum data : the last part of the
circuit consists in unitary corrections that depend on the results of
the measurements of the first two qubits.

The code is given Figure 11. We first create the unitary opera-
tors, circuitTeleportation and unitaryCorrection. They are
mathematical objects, and the second one depends on two bits of
classical information, the results of a previous measurement. It is
only in the next function, teleportation, that we make quantum
operations by applying these circuits on some qubits and measur-
ing the qubits. The quantum operation starts from a state with one
qubit to a state with one qubit and returns the pointer to this qubit.

Finally, we run the teleportation protocol with the function
runTeleportation starting with a qubit in a superposition state.
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circuitTeleportation : Unitary 3

circuitTeleportation =

H 0 (CNOT 0 1 (apply toBellBasis IdGate [1 ,2]))

unitaryCorrection : Bool -> Bool -> Unitary 1

unitaryCorrection b1 b2 =

(if b2 then XGate else IdGate)

`compose `

(if b1 then ZGate else IdGate)

teleportation : (1 _ : Qubit) ->

QuantumOp 1 1 Qubit

teleportation q0 = do

[q1 ,q2] <- newQubits 2

[q0 ,q1 ,q2] <-

applyUnitary [q0,q1,q2] circuitTeleportation

[b1 ,b2] <- measure [q0,q1]

[q] <-

applyUnitary [q2] (unitaryCorrection b1 b2)

pure q

runTeleportation : IO Bool

runTeleportation = run

(do

q <- newQubit

[q] <- applyUnitary [q] HGate

q <- teleportation q

measureQubit q

)

Figure 11: The Quantum Teleportation Protocol

In this function, linearity is enforced, and this is why we have
no choice but specify the linearity of the qubit pointer in the
teleportation function.

5 VARIATIONAL QUANTUM PROGRAMMING
In this section, we explain why Qimaera is suitable for variational
quantum programming and we implement the variational quantum
eigensolver to show how classical and quantum computations can
be mixed in an elegant way.

Variational quantum programming is a back-and-forth process
between quantum and classical operations: the classical part of the
algorithm uses the result of the qubit measurements to compute
the parameters for the quantum part. As we implement Qimaera
in an already existing programming language, Idris 2, we already
have a good support for classical computations.

Moreover, the two kinds of operations, classical and quantum,
can interact well as we implement two distinct types of operations
in Qimaera. We separate unitary circuits generation, which is a
mathematical operation that can be performed on a classical device,
from effectful operations such as qubits creation, circuits applica-
tion and measurements that are computed on a quantum device.
This separation is particularly noticeable in the code of a varia-
tional algorithm as all the effectful operations on quantum states

𝑅𝑌,\1

𝑅𝑌,\2

𝑅𝑌,\3

𝑅𝑌,\4

𝑅𝑍,\5

𝑅𝑍,\6

𝑅𝑍,\7

𝑅𝑍,\8

𝑅𝑌,\9 𝑅𝑍,\13

𝑅𝑌,\10 𝑅𝑍,\14

𝑅𝑌,\11 𝑅𝑍,\15

𝑅𝑌,\12 𝑅𝑍,\16

Figure 12: VQE ansatz for 4 qubits with a depth of 1

occur inside the run function. Outside this function, only classical
operations are allowed so there are no restrictions on the usage of
the information. On the contrary, within the state monad context,
linearity is enforced to make correct usage of quantum resources
so that laws of quantum physics are respected. It is then possible
to correctly mix quantum and classical information even if they
behave in very different ways. As creating circuits is still a classical
operation performed using the Unitary data type, unitary gates
can be parametrized by the results of classical computation (for
instance in the teleportation protocol, the unitary corrections rely
on a classical if statement depending on the result of the previous
measurement). Furthermore, as the results on measurements are
bits of classical information sent through the IO interface, they can
be used directly for classical computations. This results in an ele-
gant and natural way of combining classical and quantum operation
to make them work in tandem to solve variational problems.

5.1 The Variational Quantum Eigensolver
The variational quantum eigensolver (VQE) is a hybrid classical-
quantum algorithm that finds an upper bound of the lowest eigen-
value of a Hamiltonianmatrix. In quantum physics, the Hamiltonian
is an operator which describes the energy of a quantum system.
Finding its lowest eigenvalue is equivalent to finding the ground-
state energy of the system.

The quantum part of the algorithm consists in applying a uni-
tary circuit, the ansatz (see Figure 12 for an ansatz for four qubits),
parametrized by classical information. The classical part is an opti-
mizer that generates the set of control parameters for the ansatz.
Here, as we are interested in showing the interaction between quan-
tum and classical computation, we do not implement the classical
part. Instead of optimizing the parameters, our classical functions
generate random numbers, but their input is still the result of the
quantum measurements.

The code for the VQE is given Figure 13. The ansatz function
builds the circuit represented Figure 12. It is only the mathematical
unitary gate, it will be applied later, in the VQE’ function. Here, we
choose an ansatz with a linear entanglement. The arguments of
the ansatz function are the number of qubits, 𝑛, the depth of the
ansatz (which is the number of repetitions of the pattern rotations
gates - linear entanglement) and two vectors of size 𝑛 × (𝑑𝑒𝑝𝑡ℎ + 1)
of parameters for the rotation gates 𝑅𝑌 and 𝑅𝑍 respectively. These
parameters are optimized by the classical part. The three first func-
tions, linearEntanglement, tensorRz, and tensorRy build the
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linearEntanglement : (n : Nat) -> Unitary n

tensorRz : (n : Nat) -> Vect n Double -> Unitary n

tensorRy : (n : Nat) -> Vect n Double -> Unitary n

ansatz : (n : Nat) -> (depth : Nat) -> Vect (S depth) (Vect n Double) ->

Vect (S depth) (Vect n Double) -> Unitary n

ansatz 0 _ _ _ = IdGate

ansatz (S n) 0 [v] [w] = tensorRz (S n) w @@ tensorRy (S n) v

ansatz (S n) (S r) (v :: vs) (w :: ws) =

let circ1 = ansatz (S n) r vs ws

in circ1 @@ linearEntanglement (S n) @@ tensorRz (S n) w @@ tensorRy (S n) v

pretendComputeEnergy : Vect n Bool -> IO Double

pretendClassicalWork : (n : Nat) -> (depth : Nat) -> (resultAnsatz : Vect n Bool) ->

(hamiltonian : Vect (power 2 n) (Vect (power 2 n) (Complex Double ))) ->

IO (Vect (S depth) (Vect n Double), Vect (S depth) (Vect n Double ))

VQE ' : (n : Nat) -> (hamiltonian : Vect (power 2 n) (Vect (power 2 n) (Complex Double ))) ->

(nbIter : Nat) -> (depth : Nat) -> IO (Vect n Bool)

VQE ' n _ 0 depth = pure (replicate n False)

VQE ' n m (S k) depth = do

v <- VQE ' n m k depth

(xs ,ys) <- pretendClassicalWork n depth v m

run (do

let c = ansatz n depth xs ys

q <- newQubits n

q <- applyCircuit q c

measure2 q)

VQE : (n : Nat) -> (hamiltonian : Vect (power 2 n) (Vect (power 2 n) (Complex Double ))) ->

(nbIter : Nat) -> (depth : Nat) -> IO Double

VQE n m k d = do

res <- VQE ' n m k d

pretendComputeEnergy res

Figure 13: Code for the variational Quantum Eigensolver (VQE)

small components of the circuit, and the ansatz function composes
them. No theorem proving is needed for this unitary circuit.

The classical part takes as input the result of the measurement of
the quantum state. The function pretendComputeEnergy pretends
to compute the energy of the state using the results of the measure-
ments. The function pretendClassicalWork pretends to optimize
the parameters of the ansatz given the results of the measurements.
Its parameters are the number of qubits, 𝑛, the depth of the ansatz,
and the Hamiltonian matrix of the problem. It outputs two vectors
of 𝑛 × (𝑑𝑒𝑝𝑡ℎ + 1) parameters for the 𝑅𝑦 and 𝑅𝑧 rotations.

The VQE’ function computes the interaction between classical
and quantum operations. Its parameters are the number of qubits,
the Hamiltonian matrix of the problem, the number of iterations
of the algorithm and the depth of the ansatz. It returns the results
of the quantum operations at each iteration. The classical part is

done by the pretendClassicalWork function, and the quantum
part is completely done inside the run function. The last function,
VQE, has the same parameters as VQE’ but returns the eigenvalue
of the Hamiltonian matrix after all the computations.

6 RELATEDWORK
We will compare Qimaera to two broad classes of programming
languages for quantum computing: (1) previously existing classical
programming languages for which libraries for quantum program-
ming were later developed; and (2) standalone quantum program-
ming languages. With respect to these two broad classes, Qimaera
clearly falls in the first one.

Examples in the first class include Google’s Cirq [1] (Python
libraries), IBM’s Qiskit [5] (Python libraries), Rigetti’s pyQuil [3]
(Python libraries) and Quipper [7] (Haskell libraries). These libraries
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offer a wide-range of interesting programming features, however,
none of them are type safe and so it is possible to write erroneous
quantum programs which are not detected by the type system
during type checking (i.e. at compile time).

Languages in the second class include Microsoft’s Q♯ [4], Silq
[8] and Proto-Quipper-D [16]. Q♯ is not type safe, but the other two
languages are. Proto-Quipper-D is a linear and dependently-typed
programming language designed for circuit-based programming.
However, it does not currently support dynamic lifting (i.e. it does
not support effectful quantum programming), so it is currently
unsuitable for programming of variational quantum algorithms. Silq
is a nice language whose main feature is automatic uncomputation
of temporary values, but it has only basic support for classical
programming features and it does not support general recursion,
so it also is unsuitable for variational quantum programming.

7 CONCLUSION AND FUTUREWORK
In this paper we showed how to implement libraries for (varia-
tional) quantum programming in Idris 2. Our set of libraries, called
Qimaera, make heavy use of linearity and dependent types in order
to ensure the type-safety of our approach to (variational) quan-
tum programming. In §3, we showed how to represent quantum
unitary transformations in Idris as an algebraic data type. This
allows us to adopt a high-level algebraic and scalable approach to
the reversible fragment of quantum computation and we showed
how we can analyse, manipulate and transform such unitary cir-
cuits via high-level methods which are implemented in Idris. In
§4, we showed how full (effectful) quantum computation may be
represented in Idris using its advanced type system. Dependent
types allow us to correctly represent the compositional nature of
quantum operations. Linearity allows us to correctly model the
quantum program dynamics and to ensure the proper consumption
and manipulation of quantum resources. The induced computa-
tional effects are properly encapsulated via the IO monad which
is used for the communication between the classical device, on
which Idris is running, and the quantum device. We showed that
our approach is suitable by demonstrating how variational quantum
algorithms may be implemented in §5. To the best of our knowl-
edge, this is the first programming language that has full support
for both high-level classical and quantum programming features
and that also is type-safe.

As part of future work, we intend to evaluate Qimaera by imple-
menting more (variational) quantum algorithms and compiling an
experience report which describes our findings. Another interesting
issue is to consider whether quantum control can be implemented
in Qimaera in some form. In our current implementation, we only
support classical control, which means that the choice function that
determines subsequent (quantum) dynamics is always determined
based on available classical information (which may be extracted
through quantum measurement). With quantum control, however,
the choice function may be more general and this allows us, for
example, to derive the behaviour of the CNOT gate, rather than
assume it as a built-in constant (as we have done here). We believe
that this is a complicated matter and we leave this question for
future work.
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