
All you need is monoid
Monoidal aggregators

Michał J. Gajda

Introduction
Different computation models have received significant attention as a way to
decrease complexity of parallel computation.

We propose a tested in practice monoidal aggregator/splitoid model, and provide
simulations suggesting that it is much more efficient in practice.

Monoid model
class Monoid m where

mappend :: m → m → m
mempty :: m

In order to divide tasks into smaller ones, we could use CoMonoid that is dual
to given Monoid:
class CoMonoid m where

split :: m → (m,m)
By duality we mean that split is inverse of monoid multiplication �.

We can now call f homomorphism, or compatible with CoMonoid, when for
(x, y) = split xy the equality f xy = f x � f y holds. That is we can compute the
same function on parts, and then merge with �, or just directly without splitting.

But we want to balance the task over n computing capabilities, we want a
stronger property of always being able to split into that many balanced parts.
CoMonoid only gives us ability to split into two parts, possibly unbalanced.

In order to divide tasks into smaller ones, we use weaker Splitoid:
class Monoid m ⇒ Splitoid m where

split :: Int → α → Vector α

Note that first argument must be ≥ 1. The additional laws for Splitoid would
be:

1

length (split i x) = i
mconcat (split i x) = x

Here mconcat = fold mappend.

Alternative formulation (edward-divide-and-conquer?) is available in cases
that the different subtasks are of different types:
class Contravariant f
⇒ Divisible f where
divide :: (α → (β , γ)) → f β → f γ → f α
conquer :: f α

This approach allows us freedom to divide into tasks of a different type.

Monoidal aggregator
We also define aggregator as a triple of preprocessing, postprocessing steps, and
a monoid: preprocessing → monoid → postprocessing. This will allow us to
describe a wider class of operations (like all SQL aggregation functions1, or batch
gradient descent). All parallelism here is confined in monoid step.

data Agg m a b =
forall m. Agg {

pre :: a -> m
, append :: m -> m -> m
, post :: m -> b
}

Tensor multiplication on monoids and aggregators
(><) :: Agg m α β → Agg m α γ → Agg m α (β, γ)
Agg { pre = preA

, append = appendA
, post = postA } ><

Agg { pre = preA
, append = appendA
, post = postA } =

Agg { pre = preA &&& preB
, append = λ (a1 , b1) (a2 , b2) → (a1 ‘mappendA‘ a2, b1 ‘mappendB‘ b2)
, post = λ (α, β) → (postA α , postB β)
}

Preprocessing of input
The aggregators are well behaving profunctors(profunctor?):

1Assuming exact arithmetic.

2

instance Functor Agg m α where
fmap f Agg { pre , append , post } =

Agg { pre , append , post = f . post }

instance Profunctor Agg m where
premap f Agg { pre , append , post } =

Agg { pre = pre . f , append , post }

Conditional

Chunking

Prefiltering

Serial algorithms
We will describe serial algorithms as left folds:
serial = (λ(finalState , finalOutput) → finalOutput)

. foldl seqStep initialState

seqStep :: (Bounded state
, Enum state)

⇒ (state, output) → input → (state, output)
We note that given small enough state space state, and output write-only monoid,
we may be able to make it monoidal by translating states from (state, output)
into mapping from initial state to final result: (state :-> (state, output)).

While finite automata usually have multiple states, it may be also possible to
constrain input monoid to choke points, where automaton only accepts a smaller
number of states.

Basically we recover for a fold making decisions over a finite spaces of states s,
and with write-only output, we recover O(n ∗ s) parallel algorithm, where s is a
number of states.

For example CSV parser has only 2 states at the end of line, PDB parser has
only one state. That means that parallel PDB parser that first splits input into
line would do no extra bookkeeping, and CSV parser would only take a constant
2x overhead, with opportunity to parallelize without limits.

3

Function Preprocessing Monoid Postprocessing Notes
SUM (SQL 2016) id Sum = (Number, +, 0) id
COUNT(SQL 2016) (_ -> 1) Count = (Int, +, 0) id
MIN(SQL 2016) id (a,min,+∞) null if +∞, id otherwise
MAX(SQL 2016) id (a,max,−∞) null if −∞, id otherwise
AVG(SQL 2016) id ∗ x(λ_− > 1) Sum >< Count λ(s, γ) → s / γ
VAR(TSQL 2005) (λx− > (x2, x, 1)) Sum >< Sum >< Count λ(x2, x, c)− > x2/c− (x/c)2

STDDEV (TSQL
2005)

(λx− > (x2, x, 1)) Sum >< Sum >< Count λ(x2, x, c)− >
sqrt(x2/c− (x/c)2)

STRING_AGG
(TSQL 2005)

id (String, concat, "")

GROUPING (TSQL
2005)

1 if grouping, 0 otherwise(Bool, and, true) id

GROUPING_ID
(TSQL 2005)

level of grouping (a, lastNonNull, null) fromJust

Combinatorial opti-
mization(Athougies
2018)
Inefficient f id (α, � , []) f Arbitrary

function
f :: Monoid m ⇒
m → β

State
transducer(Kmett
2017)

id (St 7→ (St,Out), bindstate, []) lookup initialState Overhead:
O(|State|), split
at choke points

CSV parser(Ge et al.
2019; Stehle and
Jacobsen 2020)

id (Bool 7→ Out), bindstate, []) lookup False Merging is
O(AST_depth),
split at EOLs

4

Function Preprocessing Monoid Postprocessing Notes
hPDB parser(Gajda
2013)

id (Vectorˆ5, merge_nested, []ˆ5)fill_holes Merging is
O(AST_depth)=5,
split at EOLs

CFG parser id (State:->(State,ASTWithHoles) →
ASTWithHoles), bind_state, [])

f Merging is
O(AST_depth),
split at choke
points

5

type (:->) = Data.Map.Map
m1 ‘ bind_ { state}‘ m2 =

Data.Map.fromList [let (s2 , o2) ← Data.Map.lookup s1 m2
in (s1i , (s2 , o1 � o2))

| (s1i , (s1o , o1)) ← Data.Map.toList m1]
All TransactSQL function with exception of CHECKSUM_AGG can be im-
plemented as aggregators2.

Also, all relational algebra operations can be implemented with aggregators.

Related work
While traditional functional programming community used foldr and foldl
to describe reductions on the lists, the more general operation arisen
fold :: Monoid m ⇒ (α → m) → [α] → m. fold can be applied to lists,
but also trees and most other collections(Paterson 2005). It was observed
that this more general operation allows for more efficient execution of most
algorithms(Newton 2020).

Functional programming community has also long noticed that popular rep-
resentations of the String type as list of characters or array frequently list
inefficient O(n2) algorithms when used for printing long documents. Thus it was
replaced with Builder data structures that allow monoidal � operation (string
concatenation) to be executed efficiently whether most of the input lies on left
or right side of the operator.

Alternative models
Map reduce model(Dean and Ghemawat 2004) uses similar formulation of reduc-
tion, but without mathematical rigour. It also does not allow splitting at any
stage of computation.

Most reviews of models of paralellization shy from the actual simulation [@..],
even if there is evidence that some models perform poorly in practice (like
piping parsers in BioJava(Yates et al. 2012) benchmarked (Gajda 2013; c-pdb-
parser?). . .).

The closest work to ours is empirical comparison of efficiency of different reduction
patterns in serial setting (Newton 2020).

2We do not have enough data on checksum algorithm to decided whether it could also be
implemented as aggregator.

6

Experiments
In order to abstract and erase differences between the cost of computation, and
cost of transmission, we model all components as computation time, using time-
to-completion model used to model latency of distributed systems (network-
latency?).

We model the following components of the cost of computation:

• cost of initial computation of size n as O(n), O(n2) or O(n3)
• cost of merging the results as O(n), O(n), assuming that merging has no

greater cost than computation

We consider the following computation models:

1. Directed acyclic graph decomposition of the task (Kreps, Narkhede, and
Rao 2011; Armbrust et al. 2015).

2. Pipeline decomposition of the task (Yates et al. 2012).
3. Static monoidal reduction (Gajda 2013).
4. Dynamic monoidal reduction (csv?).
5. Work stealing.

We also provide some examples of the real-life tasks that were implemented in
different ways to support validity of our approach: . . .

Armbrust, Michael, Tathagata Das, Aaron Davidson, Ali Ghodsi, Andrew Or,
Josh Rosen, Ion Stoica, Patrick Wendell, Reynold Xin, and Matei Zaharia.
2015. “Scaling Spark in the Real World: Performance and Usability.” VLDB.

Athougies, Travis. 2018. “Monadic Structure of Combinatorial Optimization.”
2018. https://travis.athougies.net/posts/2018-04-23-combinatorial-
optimization.html.

Dean, Jeffrey, and Sanjay Ghemawat. 2004. “MapReduce: Simplified Data
Processing on Large Clusters.” In OSDI’04: PROCEEDINGS OF THE 6th
CONFERENCE ON SYMPOSIUM ON OPERATING SYSTEMS DESIGN
AND IMPLEMENTATION. USENIX Association.

Gajda, Michal J. 2013. “hPDB - Haskell Library for Processing Atomic Biomolec-
ular Structures in Protein Data Bank Format.” BMC Research Notes 6 (1):
483. https://doi.org/10.1186/1756-0500-6-483.

Ge, Chang, Yinan Li, Eric Eilebrecht, Badrish Chandramouli, and Donald
Kossmann. 2019. “Speculative Distributed CSV Data Parsing for Big Data
Analytics.” In Proceedings of the 2019 International Conference on Manage-
ment of Data, 883–99. SIGMOD ’19. New York, NY, USA: Association for
Computing Machinery. https://doi.org/10.1145/3299869.3319898.

Kmett, Edward. 2017. “Monoidal Parsing.” https://www.youtube.com/watch?v
=Txf7swrcLYs.

7

https://travis.athougies.net/posts/2018-04-23-combinatorial-optimization.html
https://travis.athougies.net/posts/2018-04-23-combinatorial-optimization.html
https://doi.org/10.1186/1756-0500-6-483
https://doi.org/10.1145/3299869.3319898
https://www.youtube.com/watch?v=Txf7swrcLYs
https://www.youtube.com/watch?v=Txf7swrcLYs

Kreps, Jay, Neha Narkhede, and Jun Rao. 2011. “Kafka: A Distributed
Messaging System for Log Processing.” NetDB’11.

Newton, Jim. 2020. “Performance Comparison of Several Folding Strategies.”
Trends in Functional Programming. 2020. https://www.lrde.epita.fr/wiki/P
ublications/newton.20.tfp.

Paterson, Ross. 2005. “Data.foldable.” GHC Basic libraries. 2005. http:
//hackage.haskell.org/package/base-4.14.1.0/docs/Data-Foldable.html.

SQL. 2016. “Information Technology — Database Languages — SQL — Part 1:
Framework (SQL/Framework).” ISO/IEC 9075-1:2016.

Stehle, Elias, and Hans-Arno Jacobsen. 2020. “ParPaRaw: Massively Parallel
Parsing of Delimiter-Separated Raw Data.” Proc. VLDB Endow. 13 (5):
616–28. https://doi.org/10.14778/3377369.3377372.

TSQL. 2005. “Transact-SQL User’s Guide Adaptive Server ® Enterprise.”

Yates, Andrew, Spencer E. Bliven, Peter W. Rose, Peter V. Troshin, Mark
Chapman, Jianjiong Gao, Hock Koh, et al. 2012. “BioJava: An Open-Source
Framework for Bioinformatics in 2012.” In Page 10 of 11 Original Article
Database, Vol. 2013, Article ID Bat051, Doi:10.1093/Database/Bat051.
https://doi.org/doi:10.1093/database/bat051.

8

https://www.lrde.epita.fr/wiki/Publications/newton.20.tfp
https://www.lrde.epita.fr/wiki/Publications/newton.20.tfp
http://hackage.haskell.org/package/base-4.14.1.0/docs/Data-Foldable.html
http://hackage.haskell.org/package/base-4.14.1.0/docs/Data-Foldable.html
https://doi.org/10.14778/3377369.3377372
https://doi.org/doi:10.1093/database/bat051

	Introduction
	Monoid model
	Monoidal aggregator
	Tensor multiplication on monoids and aggregators
	Preprocessing of input
	Conditional
	Chunking
	Prefiltering

	Serial algorithms

	Related work
	Alternative models
	Experiments

