
Creating Interactive Visualizations of TopHat Programs
Mark Gerarts
Open University

Heerlen, The Netherlands
mark.gerarts@gmail.com

Marc de Hoog
Open University

Heerlen, The Netherlands
mla.dehoog@studie.ou.nl

Nico Naus
Open University

Heerlen, The Netherlands
nico.naus@ou.nl

Tim Steenvoorden
Open University

Heerlen, The Netherlands
tim.steenvoorden@ou.nl

ABSTRACT
Many companies and institutions have automated their business
process in workflow management software. The novel program-
ming paradigm Task-Oriented Programming (TOP) provides an
abstraction for such software. The largest framework based on
TOP, iTasks, has been used to develop real-world software. Work-
flow software often includes critical systems, dealing with the safety
of infrastructure and people. In such cases it is important to reason
over the software to ascertain its correctness. To this end TopHat
has been developed. TopHat is a TOP language with a formal se-
mantics. However, there is no user interface available for TopHat,
making it harder to use TopHat to develop actual systems. In this pa-
per we develop a user interface for TopHat. By combining a server
framework and a user interface framework, we have developed a
fully functioning proof of concept implementation. We show that
implementing a TOP language is possible. This is done by devel-
oping an implementation in Haskell, and running several example
programs. The results of this paper show that you can have a sys-
tem that has a formal semantics and a user interface. Having such
a system brings TOP to the Haskell community and improves the
quality and verifiability of TOP software in general.

CCS CONCEPTS
• Information systems→ Enterprise information systems;Web ap-
plications; •Applied computing→ Enterprise information systems;
• Software and its engineering→Domain specific languages.

KEYWORDS
task oriented programming, user interface, functional programming
ACM Reference Format:
Mark Gerarts, Marc de Hoog, Nico Naus, and Tim Steenvoorden. 2021.
Creating Interactive Visualizations of TopHat Programs. In IFL ’21: 33rd
Symposium on Implementation and Application of Functional Languages,
September 1–03, 2021, Online. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL ’21, September 1–03, 2021, Online
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Workflow automation software is present in most businesses and
institutions nowadays. From health care and first responders, to
commerce and industrial processes. Businesses use workflow soft-
ware to streamline their processes, increase efficiency and reduce
costs. In these sectors, reliability of software is crucial.

Previous research into workflow automation software in the
functional programming community aimed to improve reliability,
while at the same time reducing the effort of development. This
lead to the development of Task-Oriented Programming (TOP), a
programming paradigm that aims to facilitate working with multi-
ple people towards a shared goal over the internet. TOP separates
the what from the how. This separation allows programmers to
focus on the work that has to be done (what) instead of paying
attention to design issues, implementation details, operating system
limitations, and environment requirements (how) [1][23].

TOP is centred around the concept of tasks, which specify the
work a user or system has to perform with a high level of abstrac-
tion. Tasks can be combined using combinators, allowing complex
programs to be constructed from small building blocks [23].

Tasks provide a description of the work that has to be performed.
It is left to the TOP framework to implement technical details such
as event handling or creating a User Interface (UI). iTasks [1] is
such a framework, implemented in the functional programming
language Clean [8]. An example of a basic task in iTasks is presented
in Listing 1. As a developer you only have to specify that you want
the user to enter some information. Passing this task to iTasks
generates an application that prompts the user for their name.

1 enterName :: Task String
2 enterName = Hint "What is your name?" @>>

enterInformation []

Listing 1: A simple task prompting the user for their name
(Clean)

iTasks has been used to create real-world applications, such as
an incident coordination tool for the Dutch coast guard [16]. While
this proves its practical usability, iTasks lacks in formalization.
Formal program verification is necessary to ensure the correctness
of mission-critical software, like the incident coordination tool.
TopHat is a Domain-Specific Language (DSL) that paves the way to
formally reason about task-oriented programs [29], by defining a

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

IFL ’21, September 1–03, 2021, Online Gerarts and de Hoog, et al.

formal semantics for tasks and combinators. It lacks an interactive
web UI, and for this, TopHat relies on the iTasks framework.

Having an interactive UI for TopHat provides us with the best of
both worlds, a TOP language that is both suitable for formal verifi-
cation and usable in practice. In this paper we present a prototype
framework written on top of TopHat’s Haskell implementation
that is able to create interactive visualizations of TopHat programs.
We combine the best of both worlds: we generate practical task-
oriented applications that can be formally verified. By using Haskell
we hope to bring TOPwithin reach of researchers and programmers
who are not familiar with Clean and iTasks.

iTasks is written in Clean, while the TopHat framework uses
Haskell as its host language.

Clean was first introduced in 1987 [6], and has since been an
inspiration for Haskell and vice versa. While both languages are
largely similar, there are a few key differences that can be prob-
lematic. The most notable difference is the handling of I/O: Haskell
uses the IO monad, while Clean uses uniqueness typing [4]. An-
other difference is Clean’s generic programming system, which is
heavily used by the iTasks framework. iTasks relies on many of
these Clean specific language features. This begs the question if
these constructs are strictly necessary for the development of a
TOP framework, or if such a system can also be developed in a
different language, in our case Haskell.

Work presented in this paper is based on the thesis project pub-
lished under the same title [14].

We first provide some background about TOP in Section 2. We
then demonstrate how our framework renders some example ap-
plications and take a deeper look at the architecture in Section 3.
We highlight related work in Section 4 and provide a conclusion in
Section 5.

2 TASK ORIENTED PROGRAMMING
This paper builds upon previous research into Task-Oriented Pro-
gramming (TOP). In this section we describe the basic idea of TOP,
together with two TOP frameworks; iTasks and TopHat. We com-
pare the two frameworks and then conclude why there is a need
for a graphical user interface for Tophat.

2.1 Task-Oriented Programming
The TOP paradigm provides an abstraction over workflow software.
Instead of having to write a server, database, user interfaces, etc,
programmers just define what needs to be done. The complete
application is then derived from this specification. TOP is usually
embedded in pure functional programming. TOP is made up of four
core concepts [23]:

Tasks that describe the work that has to be performed, provid-
ing an abstraction that separates the what from the how [1].

Shared data sources that allow the sharing of data between
tasks.

Generics to generate user interfaces based on data types.
Composition of tasks through combinators, allowing the cre-

ation of arbitrary large tasks. Composition can be both se-
quential and parallel.

TOP aims to facilitate collaborating withmultiple people towards
a shared goal, over the internet. Tasks lie at the heart of TOP. A

task models the work that has to be done by the system or a user.
Tasks can be combined using combinators: they can be executed
sequentially, in parallel, or conditionally. These combinators closely
resemble how collaboration happens in real life.

Combining small tasks allows creating large and complex appli-
cation using simple building blocks. Creating complex applications
is further facilitated because tasks are first-class citizens: they can
be used as input of functions, they can be returned from them, and
tasks can contain other tasks as value.

Tasks are interactive and input-driven. When a task receives
input it is reevaluated and results in a new task. A task’s value can
be observed at all times, and tasks can share information with each
other, either directly through shared data stores, or by passing task
values to continuations.

2.2 iTasks
TOP focuses on the domain logic, with tasks providing merely a
description of the work that has to be performed. It is left up to
a TOP framework to do the heavy lifting, such as generating the
user interface, storing and handling data, setting up a web server,
and authenticating users. iTasks [22] is a TOP framework that
uses Clean [6] as its host language. It supplements Clean with a
set of combinators, model types, and algorithms that allow the
construction of task-oriented programs.

An example of a basic task is given in Listing 1. iTasks will
automatically generate an entire application for this task. It uses
generics to deduce that a task of type String requires a text input
field.

Tasks can be combined through combinators, allowing to con-
struct complex applications from small building blocks. In Listing 2
we combine the previous task with a view task using a sequential
step combinator. A user has to enter their name and is greeted by
the program after stepping to the next task. Figure 1 shows how
these steps would look in iTasks.

1 greet :: Task String
2 greet = enterName >>!
3 \result -> viewInformation [] ("Hello " +++

result)

Listing 2: Combining two tasks with a step combinator
(Clean)

iTasks is a work in progress, receiving constant updates and
improvements. For example, a recent addition is the usage of a
distributed, dynamic infrastructure [21]. iTasks has formed the
basis of further research as well. Tonic [31] facilitates the subject
for non-technical people by providing graphical blueprints of iTasks
specifications. It also provides a way to monitor the process while
end users are interacting with the application [30]. iTasks acted as
the starting point for research into declarative user interfaces, first
for SVG images [2] and later as a generalized solution [3].

2.3 TopHat
When software is used in critical applications, it is important that
its behaviour can be verified and formally reasoned about. iTasks is
primarily focused on practical applicability, and therefore lacks this

Creating Interactive Visualizations of TopHat Programs IFL ’21, September 1–03, 2021, Online

Figure 1: Entering your name (left) and the result after press-
ing continue (right)

formalisation. Testing an iTasks application is time consuming and
often incomplete because of the many different execution paths.

TopHat [29] distills TOP’s core features into a DSL that aims
to provide a way to reason about task-oriented programs. By em-
ploying symbolic execution it is possible to formally verify TopHat
programs [19]. Symbolic execution has also been used to provide
end-users of tasks with additional feedback [20].

Our work is based on TopHat’s Haskell implementation, but
an implementation exists for Idris as well. Idris is a programming
language that features dependent types and a totality checker.

An example task written in TopHat’s Haskell implementation is
given in Listing 3. Similar to the iTasks example, this task uses a
step combinator to ask a user their name and subsequently greet
them.

1 greet :: Task h String
2 greet = enter >>? \result -> view ("Hello " ++ result)

Listing 3: A TopHat task that greets the user (Haskell)

TopHat contains the following set of tasks and combinators:
Editors editors model user interaction. They are typed con-

tainers that are either empty or hold a value.
Update editor an editor with a predefined value.
View editor an editor with a view-only value.

Enter editor an editor that is initially empty. Filling it trans-
forms it into an Update editor.

Select editor an editor with a predefined list of options.
Watch editor an editor that displays the value of a shared

data store.
Change editor an editor that allows to change the value of

a shared data store.
Done and Fail success and failure end states.
Pair a combination of two tasks (parallel task composition).
Step sequentially moves from one task to another.
Choose internal choice between two tasks.
Assign used in the context of shared data stores to assign a

value to a reference.

2.4 Research question
Above we introduced TopHat as a tool to formally reason about
task-oriented programs. There is a need for a TOP framework
with TopHat as its foundation, because such framework can render
a web UI directly, without a translation to iTasks, while formal
reasoning about TOP programs is still possible. This paper answers
the question: To what extent is it possible to add an interactive web
UI to a TopHat program without a translation to iTasks, and without
the use of Clean-specific constructs?

3 TOPHAT USER INTERFACE
In this section we describe our prototype TOP framework, which
is a proof-of-concept and not a full-fledged TOP framework. Our
application supports the TopHat’s tasks that are mentioned in Sec-
tion 2.3, except for the choice combinator. The choice combinator
will be added in the post-conference version of this paper. We limit
ourselves to a select number of datatypes: only integers, booleans,
and strings are supported. Advanced framework features such as
multi-user support are out of scope as well.

We start by presenting some example TopHat programs and
how our application renders them in Section 3.1. In Section 3.2
we describe the architecture of our prototype. The framework is
published on GitHub 1, along with the examples described below,
and documentation on how to install and run them.

3.1 Application
We present a few examples to demonstrate how our framework
handles TopHat programs. We use a simple multiplication-by-seven
machine to demonstrate the Step task and the Edit task (with View,
Enter, and Update editors). The candy vending machine combines
the Select and View editor, the Step Task, and the Pair Task to
construct a candy machine. The calorie calculator demonstrates a
real-world application of our framework. Finally, the chat sessions
demonstrates the use of shared datastores.

3.1.1 Multiplication-by-seven machine. A multiplication-by-seven
machine is a simple machine that multiplies a user’s input by seven
and displays the result. We use different tasks and editors, which
we mention explicitly in the next steps. The implementation of the
initial task is given in Listing 4.

1https://github.com/mark-gerarts/ou-afstuderen-artefact

https://github.com/mark-gerarts/ou-afstuderen-artefact

IFL ’21, September 1–03, 2021, Online Gerarts and de Hoog, et al.

(a) Enter a value. (b) Editor changes from Enter to Update. (c) A view editor displays the answer.

Figure 2: Different stages of the multiplication-by-seven machine

1 multBySevenMachine :: Task h Int
2 multBySevenMachine = enter >>? multBySeven
3
4 multBySeven :: Int -> Task h Int
5 multBySeven = multiplication 7
6
7 multiplication :: Int -> Int -> Task h Int
8 multiplication x y = view (x * y)

Listing 4: Initial task of the multiplication-by-seven
machine (Haskell)

(1) After the application is started, the application renders an
Edit task with an Enter editor (see Figure 2a).

(2) Enter a value.
The application sends the input to the backend and a new
task is returned. This task is still an Edit task. However, the
editor is changed from Enter to Update (see Figure 2b).

(3) Press the continue button or press <Enter>.
The continue button is part of the Step Task.

(4) The application shows a View task, which contains the value
multiplied by seven (see Figure 2c).

3.1.2 Candy vending machine. The candy machine allows a user to
choose a chocolate bar and, after the bill is paid, the candy machine
returns the bar. The candy machine combines the Edit, Pair and
Step task. We have defined different Edit tasks with View and Select
editors. The implementation of the initial task is given in Listing 5.
The Pair combinator is denoted with the operator ><.

(1) After the candy machine is started, the machine displays
some introductory text and a selection of chocolate bars (See
Figure 3a). This is done using a Pair Task that consists of
two Edit tasks: an Edit task with a View editor and an Edit
Task with a Select editor.

(2) Select a chocolate bar. After choosing a bar, the candy ma-
chine displays the price of the bar (see Figure 3b). This is
done using another Pair Task that consists of an Edit task
with a View editor (“you need to pay:”) and a Step Task. The
Step task consists of two tasks: first a view editor is shown
(with the price) and after the step, a select editor is rendered
(see Figure 3c).

(3) Press the continue button.
(4) Insert coins until you have paid the bill (see Figure 3c). The

application alternates a view and a select editor.
(5) The application shows a view editor to indicate to the user

that the bill is paid (see Figure 3d).

1 data CandyMachineMood = Fair | Evil
2
3 startCandyMachine :: (Task h (Text , (Text , Text)))
4 startCandyMachine = view "We offer you three chocolate
5 bars. Pure Chocolate: It 's all in the name. IO
6 Chocolate: Chocolate with unpredictable side effects.
7 Sem Chocolate: don 't try to understand , just eat
8 it!" >< select candyOptions
9
10 candyOptions :: HashMap Label (Task h (Text , Text))
11 candyOptions =
12 [entry "Pure Chocolate" 8,
13 entry "IO Chocolate" 7,
14 entry "Sem Chocolate" 9
15]
16 where
17 entry :: Text -> Int -> (Label , Task h (Text , Text))
18 entry name price =
19 (name , view "You need to pay:" >< (view price >>?

payCandy))
20
21 payCandy :: Int -> Task h Text
22 payCandy bill =
23 select (payCoin bill) >>? \billLeft ->
24 case compare billLeft 0 of
25 EQ -> dispenseCandy Fair
26 LT -> dispenseCandy Evil
27 GT -> payCandy billLeft
28
29 payCoin :: Int -> HashMap Label (Task h Int)
30 payCoin bill =
31 [coinSize 5,
32 coinSize 2,
33 coinSize 1
34]
35 where
36 coinSize :: Int -> (Label , Task h Int)
37 coinSize size = (display size , view (bill - size))
38
39 dispenseCandy :: CandyMachineMood -> Task h Text
40 dispenseCandy Fair =
41 view "You have paid. Here is your candy. Enjoy it!"
42 dispenseCandy Evil =
43 view "You have paid too much! You don 't get change ,

but here is your candy."

Listing 5: Initial Task of the candy vending machine
(Haskell)

Creating Interactive Visualizations of TopHat Programs IFL ’21, September 1–03, 2021, Online

(a) Step 1: Select a chocolate bar

(b) Step 2: Select a chocolate bar

(c) Step 3: Insert a coin

(d) Step 4: You have paid the bill

Figure 3: Different stages of the candy vending machine

3.1.3 Calorie calculator. As a final example we created a calorie
calculator to demonstrate a more real-world application that in-
corporates most task types. This application calculates how many
calories a person should eat per day in order to maintain their
weight. The calculation depends on several factors, such as age,
weight, and activity level. The application can be broken down in
several steps to prompt the user for input, and finally calculating
the result. The implementation of the initial task is given in Listing
6.

(1) When started, the application presents the user with some
information about the calculation using a View editor.

(2) After pressing continue, the user is prompted to enter the
required data in different steps: height, weight, and age using
Enter editors, and gender and activity level using Select

editors. Each prompt is wrapped in a Pair task with a View
editor on the left side to act as the label. Such a prompt is
shown in Figure 4.

(3) In the last step the result is displayed using a View editor.

1 data Gender = Male | Female
2
3 data ActivityLevel
4 = Sedentary
5 | Low
6 | Active
7 | VeryActive
8
9 type Height = Int
10
11 type Weight = Int
12

IFL ’21, September 1–03, 2021, Online Gerarts and de Hoog, et al.

Figure 4: Prompting the user to enter his/her height

13 type Age = Int
14
15 calculateCaloriesTask :: Task h Text
16 calculateCaloriesTask =
17 introduction >>? _ -> do
18 (_, height) <- promptHeight
19 (_, weight) <- promptWeight
20 (_, age) <- promptAge
21 (_, gender) <- promptGender
22 (_, activityLevel) <- promptActivityLevel
23 let calories = calculateCalories gender

activityLevel height weight age
24 view
25 ("Your resting metabolic rate is: "
26 <> display calories
27 <> " calories per day."
28)
29
30 introduction :: Task h Text
31 introduction = view <| unlines
32 ["This tool estimates your resting metabolic rate ,",
33 "i.e. the number of calories you have to consume",
34 "per day to maintain your weight.",
35 "Press \" Continue \" to start"
36]
37
38 promptGender :: Task h (Text , Gender)
39 promptGender =
40 view "Select your gender:"
41 >< select
42 ["Male" ~> Done Male ,
43 "Female" ~> Done Female
44]
45
46 promptHeight :: Task h (Text , Height)
47 promptHeight = view "Enter your height in cm:" >< enter
48
49 promptWeight :: Task h (Text , Weight)
50 promptWeight = view "Enter your weight in kg:" >< enter
51
52 promptAge :: Task h (Text , Age)
53 promptAge = view "Enter your age:" >< enter
54
55 promptActivityLevel :: Task h (Text , ActivityLevel)
56 promptActivityLevel =
57 view "What is your activity level?"
58 >< select
59 ["Sedentary" ~> Done Sedentary ,
60 "Low active" ~> Done Low ,
61 "Active" ~> Done Active ,
62 "Very Active" ~> Done VeryActive
63]
64
65 -- We omit the actual calculation here since it is a bit

lengthy.
66 calculateCalories :: Gender -> ActivityLevel -> Height ->

Weight -> Age -> Int
67 calculateCalories gender al h w age = ...

Listing 6: Initial task of the calorie calculator (Haskell)

3.1.4 Chat session. We use shared data stores to model a chat
session between two users, as displayed in Figure 5. Each user can
write messages to the chat history on the left hand side using their
respective inputs on the right hand side.

The implementation for this example is given in Listing 7. The
function share creates a data store that can be accessed by multiple
tasks, in this case the two chat tasks. The <<= operator is used to
transform the contents of the shared data store.

1 chatSession :: Reflect h => Task h (Text , ((), ()))
2 chatSession = do
3 history <- share ""
4 watch history ><
5 (chat "Tim" history >< chat "Nico" history)
6 where
7 chat :: Text -> Store h Text -> Task h ()
8 chat name history = repeat <|
9 enter >>* ["Send" ~> append history name]
10
11 append :: Store h Text -> Text -> Text -> Task h ()
12 append history name msg = do
13 history <<= \h ->
14 (if h == "" then h else h ++ "\n")
15 ++ name ++ ": '"
16 ++ msg ++ "'"

Listing 7: A chat Session using shared data stores (Haskell)

3.2 Architecture
Figure 6 shows the architecture of the artefact. The artefact is
architecturally separated in two parts: the backend and the frontend.
The figure shows the main modules of each part. At the backend
we initialize tasks and handle communication with TopHat. At the
frontend we render the UI. After a comparative study of existing
web server and UI frameworks, we have selected Servant [24] as our
webserver and Halogen[7] for the UI. Other options are discussed
in the Section 4. We use JSON to establish the communication
between frontend and backend. In section 3.2.1 we illustrate the
communication between frontend and backend. In section 3.2.2
we explain the working of the backend in detail. The frontend is
discussed in section 3.2.3.

3.2.1 Communication between backend and frontend. Figure 7 shows
the communication between frontend and backend. The frontend
first requests the initial task, which the backend returns using a
JSON representation of this task. A user can now interact with the
system. In this example, the user updates a value. The frontend
sends the input as JSON to the backend, and the backend responds
with the updated task. This step can be repeated as necessary. In this

Creating Interactive Visualizations of TopHat Programs IFL ’21, September 1–03, 2021, Online

Figure 5: A chat session using shared data stores.

Figure 6: Architecture. Each box represents a main module.

case, the user resets the application, which results in the backend
resetting back to the initial task.

The frontend is written in PureScript and the backend in Haskell.
We choose JSON as data interchange format, because JSON allows
custom data structures, it is easy to use, and both backend and
frontend support JSON out-of-the-box.

3.2.2 Backend. The backend iswritten inHaskell, using Servant [24]
as the web server. Servant provides combinators to implement our
features, which makes coding less error prone and time-consuming.
Servant is up-to-date, well-maintained, well documented and it is
easy to get a working prototype.

Servant was developed for practical reasons at Zalora in 2014.
Servant is a Domain Specific Language for Haskell that uses APIs
to describe the request types, response types and the constraints
that are imposed. Web APIs are Haskell types and they are first-
class. Developers can check different implementations against these

Figure 7: Communication between frontend and backend.
Sequence diagram that displays requests (solid arrows) and
responses (dashed arrows). update value and reset are user ac-
tions. Task and Input are JSON objects.

APIs and they use APIs to perform compatibility checks [18]. Ser-
vant is developed to create type-safe web applications, clients and
documentation. Servant consists of four modules: serving an API,
querying an API, JavaScript for querying and documenting an
API [24].

The backend consists of three modules:
(1) Application: this module loads the application, sets up the

server and defines the handlers (initial tasks, interact, reset
and static files).

(2) Communication: this module handles JSON conversion.
(3) Visualize: module to run a web server with a given task.

It is possible to load either a development or production
environment.

Application module. We create an abstract web Application (WAI-
application) in the Application module (see the application func-
tion in Listing 8). We define the endpoints, the request and the
response formats. For example, see the TaskAPI in Listing 8. The
server function provides handlers to serve the initial task, to han-
dle interaction with the frontend and to perform a reset. We bridge
the gap to TopHat in initialiseIO, inputsIO and interactIO.
We have only added key signatures to Listing 8.

IFL ’21, September 1–03, 2021, Online Gerarts and de Hoog, et al.

1 module Application (application , State (..)) where
2
3 data State h t = State
4 { currentTask :: TVar (Task RealWorld t),
5 initialised :: Bool ,
6 originalTask :: Task RealWorld t
7 }
8
9 type TaskAPI =
10 "initial -task"
11 :> Get '[JSON] JsonTask
12 :<|> "interact"
13 :> ReqBody '[JSON] JsonInput :> Post '[JSON]

JsonTask
14 :<|> "reset"
15 :> Get '[JSON] JsonTask
16
17 type StaticAPI = Get '[HTML] RawHtml :<|> Raw
18 type API = TaskAPI :<|> StaticAPI
19
20 interactIO :: Input Concrete -> Task RealWorld a -> IO (

Task RealWorld a)
21 initialiseIO :: Task RealWorld a -> IO (Task RealWorld a)
22 inputsIO :: Task RealWorld a -> IO (List (Input Dummy))
23
24 server :: ToJSON t => State h t -> ServerT API (AppM h t)
25
26 application :: ToJSON t => State h t -> Application

Listing 8: Application module (Haskell)

Communication module. In Listing 9 we show the core of the
communication module. We introduce a new datatype, JsonTask,
that wraps a TopHat Task to prevent orphaned instances. User
input, which is sent back and forth from the client to the server, is
defined in JsonInput. Both datatypes are provided with instances
to convert them from and to JSON.

1 module Communication (JsonTask (..), JsonInput (..))
where

2
3 data JsonTask where
4 JsonTask :: ToJSON t
5 => Task h t
6 -> List (Input Dummy)
7 -> JsonTask
8
9 instance ToJSON JsonTask
10
11 taskToJSON :: Task h t -> Value
12 nameToJSON :: Name -> Value
13 editorToJSON :: Editor h t -> Value
14 inputToJSON :: Input Dummy -> Value
15
16 data JsonInput where
17 JsonInput :: Input Concrete -> JsonInput
18
19 instance FromJSON JsonInput
20
21 parseConcrete :: Value -> Parser Concrete
22 parseName :: Value -> Parser Name

Listing 9: Communication module (Haskell)

Visualize module. In Listing 10 we show the signatures of the
visualize module. We use this module to run the web server in pro-
duction (visualizeTask) or development (visualizeTaskDevel)
mode. We differentiate between these modes because we imple-
mented live code reloading for development, which requires a bit of

additional setup. Both visualizeTask and visualizeTaskDevel
use the initApp function. InitApp on its turn invokes the application-
function of the Application Module.

1 module Visualize (visualizeTask , visualizeTaskDevel)
where

2
3 initApp :: ToJSON t => Task RealWorld t -> IO Application
4
5 visualizeTaskDevel :: ToJSON t => Task RealWorld t -> IO

()
6
7 visualizeTask :: ToJSON t => Task RealWorld t -> IO ()

Listing 10: Visualize module (Haskell)

3.2.3 Frontend. The frontend renders the UI. The code is written
in PureScript using the Halogen framework. We have selected Pure-
Script to render the UI of our framework, because PureScript is
a featureful language that fits our problem domain. Halogen pro-
vides an excellent developer experience, has a component based
architecture and PureScript’s power and expressiveness.

PureScript [13] is a functional programming language that com-
piles to JavaScript and shares a lot of similarities with Haskell. Key
differences include strict evaluation and extensible records, which
ease the translation to JavaScript. Halogen [7] is a declarative UI li-
brary for PureScript. It is based on components; a single component
is similar to an Elm application, but components can be composed
to create complex user interfaces.

The frontend consists of three main modules and some auxiliary
modules. In this section we explain the main modules.

(1) Client: module to send requests (initial tasks, interact, reset)
to the backend and handle responses.

(2) Task: module to handle JSON encoding and decoding of our
domain’s datatypes (Task, Editor, Value, Input, and InputDe-
scription).

(3) TaskLoader: module to render the UI.

Client module. The client module is responsible for the com-
munication between frontend and backend. The backend sends
a response in JSON that consists of two parts: a Task and a de-
scription of possible inputs. We decode this JSON object into a
TaskResponse. See Listing 11.

1 module App.Client (ApiError , TaskResponse (..),
getInitialTask , interact , reset) where

2
3 data TaskResponse
4 = TaskResponse Task (Array InputDescription)
5
6 instance decodeJsonTaskResponse :: DecodeJson

TaskResponse
7
8 getInitialTask :: Aff (Either ApiError TaskResponse)
9
10 interact :: Input -> Aff (Either ApiError TaskResponse)
11
12 reset :: Aff (Either ApiError TaskResponse)

Listing 11: Client module (PureScript)

Creating Interactive Visualizations of TopHat Programs IFL ’21, September 1–03, 2021, Online

Task module. In the Client module we defined a TaskResponse.
This TaskResponse consists of two parts: a Task and an array of
InputDescription. In the Task module we define the decoding
process of Task and InputDescription. See Listing 12.

1 module App.Task where
2
3 data Task
4 = Edit Name Editor
5 | Pair Task Task
6 | Step Task
7 | Done
8 | Fail
9
10 instance showTask :: Show Task
11
12 instance decodeJsonTask :: DecodeJson Task
13
14 data Input
15 = Insert Int Value
16 | Option Name String
17
18 instance showInput :: Show Input
19
20 instance encodeInput :: EncodeJson Input
21
22 data InputDescription
23 = InsertDescription Int String
24 | OptionDescription Name String
25
26 instance showInputDescription :: Show InputDescription
27
28 instance decodeJsonInputDescription :: DecodeJson

InputDescription
29

Listing 12: Task module (PureScript)

TaskLoader module. The TaskLoader module renders the user
interface (the render function in Listing 13). The module also con-
tains logic to handle events (handleAction), for example when a
user modifies a value. Finally, the taskLoader function (see Listing
13) initialises the component.

1 module Component.TaskLoader (taskLoader) where
2
3 taskLoader :: forall query input output m. MonadAff m =>

H.Component query input output m
4
5 handleAction :: forall output m. MonadAff m => Action ->

H.HalogenM State Action Slots output m Unit
6
7 render :: forall m. MonadAff m => State -> HH.

ComponentHTML Action Slots m

Listing 13: TaskLoader module (PureScript)

With the above, we have shown how an interactive web UI can be
added to TopHat, using existing frameworks. The implementation
has been validated by running several example applications.

4 RELATEDWORK
Section 2 already discussed related work on TOP, therefore we
focus on non-TOP related work in the discussion below.

4.1 Functional Reactive Programming
Functional Reactive programming (FRP) is another approach to UI
development using functional programming. FRP is a programming
paradigm centered around interactive event-based applications. It
has implementations in multiple programming languages, such
as Haskell and JavaScript [5]. FRP consists of two main concepts:
behaviors and events. A behavior consists of a value and can be
mapped to output, for example a label. Behaviors can depend on
other behaviors, so a change in a behavior can propagate through a
network of dependent behaviors. An event only occurs at a certain
point in time and contains a value. Input is mapped to events, for
example the pressing of a key or the position of the mouse cursor.
Events can trigger changes in behaviors.

4.2 User interface frameworks
Besides Halogen, many other UI frameworks exist.

Elm [10] refers to both Elm, a functional programming language
that compiles to JavasScript [9], and TEA [12], a programming
pattern that emerged from it. Elm’s ecosystem consists of a large
number of available libraries that help in creating web applications.

Miso [15] is a Haskell front-end framework inspired by Elm and
Redux. It relies on GHCJS [17], a Haskell-to-JavaScript compiler
based on GHC. The main drawbacks of GHCJS are that it is noto-
riously difficult to install and that it has a limited ecosystem with
regards to development tools and IDE integration. The installation
process can be largely facilitated by using the Nix package man-
ager [11]. Nix comes with its own sets of problems though, such as
a small community and limited documentation

Reflex [32] is an FRP framework written in Haskell with sup-
port for a variety of platforms, including the web, desktop, and
mobile. Reflex applications are modular, which makes growing and
refactoring an application efficient and swift.

4.3 Web servers
We have opted for Servant as our webserver, but other alternatives
are available.

In 2010, Michael Snoyman developed the Yesod Web Frame-
work [26]. "Yesod is a Haskell web framework for productive de-
velopment of type-safe, RESTful, high performance web applica-
tions" [27]. The YesodWeb Framework adds the strengths of Haskell
(like type safety) to the web. Especially on the boundaries of Yesod
and the world, for example a user enters input or persistent data is
loaded, Yesod adds mechanisms to define the expected types [25].

In 2011, Michael Snoyman developed SimpleServer to test code
of the Yesod Web Framework. Matt Brown added some improve-
ments. The result was a small and fast web server, which was called
Warp. Nowadays, Warp is the default web server of the Yesod Web
Framework [28]. Warp implements the Web Application Interface
(WAI).

5 CONCLUSION
We conclude that it is possible to create an interactive web UI for
TopHat programswithout resorting to Clean or iTasks. Even though
our implementation does not have the full capabilities of the iTasks
framework. we show that all the basic requirements for a TOP
framework can be implemented. We have support for tasks, shared

IFL ’21, September 1–03, 2021, Online Gerarts and de Hoog, et al.

data stores, combinators and generics. Having said that, we do not
yet support the complete feature-set a TOP framework should have.

5.1 Future work
Our prototype framework can be extended in several ways, to cover
the complete feature-set of iTasks. We consider these extensions to
be interesting pieces of future work.

Datatypes. Currently, only integers, booleans and strings are sup-
ported by the prototype. In practice, many other types of data occur,
and indeed iTasks supports many more. It would be interesting to
support more sophisticated data types, such as lists, coordinates,
times and dates.

Multi-user. A workflow management system, and therefore also a
TOP system, is not complete without support for multiple users.
Working together lies at the heart of the programming paradigm.
It therefore speaks for itself that multi-user support would be an
interesting and important next step.

REFERENCES
[1] Peter Achten, Pieter Koopman, and Rinus Plasmeijer. 2015. An Introduc-

tion to Task Oriented Programming. Springer International Publishing,
Cham, 187–245. https://www.researchgate.net/profile/Peter_Achten/
publication/295505446_An_Introduction_to_Task_Oriented_Programming/
links/56e1350d08ae9b93f79c46e5/An-Introduction-to-Task-Oriented-
Programming.pdf

[2] Peter Achten, Jurriën Stutterheim, László Domoszlai, and Rinus Plasmeijer. 2014.
Task Oriented Programming with Purely Compositional Interactive Scalable
Vector Graphics. ACM, 1–13.

[3] Peter Achten, Jurriën Stutterheim, Bas Lijnse, and Rinus Plasmeijer. 2016. Towards
the Layout of Things. ACM, 1–13. https://dl-acm-org.ezproxy.elib11.ub.unimaas.
nl/doi/pdf/10.1145/3064899.3064905

[4] Peter Achten, John Van Groningen, and Rinus Plasmeijer. 1993. High Level Apec-
ification of I/O in Functional Languages. In Functional Programming, Glasgow
1992. Springer, 1–17. https://repository.ubn.ru.nl/bitstream/handle/2066/111106/
111106.pdf?sequence=1

[5] Engineer Bainomugisha, Andoni Carreton, Tom Cutsem, Stijn Mostinckx, and
Wolfgang Meuter. 2013. A survey on Reactive Programming. ACM computing
surveys 45, 4 (2013), 1–34.

[6] TH Brus, Marko CJD van Eekelen, MO Van Leer, and Marinus J Plasmeijer.
1987. Clean—A Language for Functional Graph Rewriting. In Conference on
Functional Programming Languages and Computer Architecture. Springer, 364–
384. https://link-springer-com.ezproxy.elib10.ub.unimaas.nl/content/pdf/10.
1007%2F3-540-18317-5_20.pdf

[7] Burgess and Honeyman et al. 2021. Halogen. https://github.com/purescript-
halogen/purescript-halogen. Version 6.1.2.

[8] Clean 2021. Clean. https://clean.cs.ru.nl. Version 3.0.
[9] Czaplicki. 2012. Elm. https://elm-lang.org. Version 0.19.1.
[10] Czaplicki. 2012. Elm: Concurrent frp for functional guis. Senior thesis, Harvard

University 30 (2012).
[11] Eelco Dolstra, Merijn De Jonge, Eelco Visser, et al. 2004. Nix: A Safe and Policy-

Free System for Software Deployment.. In LISA, Vol. 4. 79–92.
[12] Elm Guide 2021. The Elm Architecture. https://guide.elm-lang.org/architecture.

Accessed at 2021-07-01.
[13] Freeman and Burgess et al. 2021. PureScript. https://www.purescript.org/. Version

0.13.8.
[14] Mark Gerarts and Marc de Hoog. 2021. Creating Interactive Visualizations of

TopHat Programs.
[15] Johnson. 2020. Miso. https://haskell-miso.org. Version 1.7.1.
[16] Bas Lijnse, Jan Martin Jansen, Rinus Plasmeijer, et al. 2012. Incidone: A Task-

Oriented Incident Coordination Tool. In Proceedings of the 9th International
Conference on Information Systems for Crisis Response and Management, ISCRAM,
Vol. 12. https://www.academia.edu/download/44093349/Incidone_A_Task-
Oriented_Incident_Coordi20160325-5075-7woz7i.pdf

[17] Mackenzie et al. 2021. GHCJS. https://github.com/ghcjs/ghcjs. Version 8.6.
[18] AlpMestanogullari, Sönke Hahn, Julian K. Arni, and Andres Löh. 2015. Type-level

Web APIs with Servant: an Exercise in Domain-Specific Generic Programming.
ACM, 1–12.

[19] Nico Naus, TJ Steenvoorden, et al. 2019. A symbolic execution semantics for
TopHat. (2019). https://repository.ubn.ru.nl/bitstream/handle/2066/214654/
214654.pdf?sequence=1

[20] N. Naus, T. J. Steenvoorden, A. Byrski, and J. Hughes. 2020. Generating Next
Step Hints for Task Oriented Programs Using Symbolic Execution. Lecture notes
in computer science (2020), 47–68. https://link-springer-com.ezproxy.elib10.ub.
unimaas.nl/content/pdf/10.1007%2F978-3-030-57761-2_3.pdf

[21] Arjan Oortgiese, John van Groningen, Peter Achten, and Rinus Plasmeijer. 2017.
A Distributed Dynamic Architecture for Task Oriented Programming. ACM,
1–12. https://dl-acm-org.ezproxy.elib11.ub.unimaas.nl/doi/pdf/10.1145/3205368.
3205375

[22] Rinus Plasmeijer, Peter Achten, and Pieter Koopman. 2007. iTasks: Executable
Specifications of Interactive Work Flow Systems for the Web. ACM SIGPLAN
Notices 42, 9 (2007), 141–152. https://www.academia.edu/download/39518337/
ITasks_Executable_specifications_of_inte20151029-18594-mn0lg0.pdf

[23] Rinus Plasmeijer, Bas Lijnse, Steffen Michels, Peter Achten, and Pieter Koopman.
2012. Task-Oriented Programming in a Pure Functional Language. ACM, 195–206.
https://repository.ubn.ru.nl/bitstream/handle/2066/103802/103802.pdf

[24] Servant Contributors. 2021. Servant – A Type-Level Web DSL. https://docs.
servant.dev/en/stable/index.html. Version 0.18.3.

[25] Snoyman. 2012. Developing Web Applications with Haskell and Yesod. O’Reilly
Media, Inc.

[26] Snoyman. 2020. The Abominable Snoyman). https://www.snoyman.com/.
[27] Snoyman. 2020. Yesod Web Framework. https://www.yesodweb.com/.
[28] M. Snoyman. 2011. Warp: A Haskell Web Server. IEEE internet computing 15, 3

(2011), 81–85.
[29] Tim Steenvoorden, Nico Naus, and Markus Klinik. 2019. TopHat: A formal

foundation for task-oriented programming. ACM, 1–13. https://dl-acm-org.
ezproxy.elib11.ub.unimaas.nl/doi/10.1145/3354166.3354182

[30] J. Stutterheim, P. Achten, R. Plasmeijer, V. Zsók, Z. Porkoláb, and Z. Horváth.
2019. Static and Dynamic Visualisations of Monadic Programs. Lecture notes in
computer science (2019), 341–379. https://link-springer-com.ezproxy.elib11.ub.
unimaas.nl/content/pdf/10.1007%2F978-3-030-28346-9_9.pdf

[31] Jurriën Stutterheim, Rinus Plasmeijer, and Peter Achten. 2014. Tonic: An In-
frastructure to Graphically Represent the Definition and Behaviour of Tasks. In
International Symposium on Trends in Functional Programming. Springer, 122–141.
https://link.springer.com/chapter/10.1007/978-3-319-14675-1_8

[32] Trinkle et al. 2020. Reflex. https://reflex-frp.org/. Version 0.8.0.0.

https://www.researchgate.net/profile/Peter_Achten/publication/295505446_An_Introduction_to_Task_Oriented_Programming/links/56e1350d08ae9b93f79c46e5/An-Introduction-to-Task-Oriented-Programming.pdf
https://www.researchgate.net/profile/Peter_Achten/publication/295505446_An_Introduction_to_Task_Oriented_Programming/links/56e1350d08ae9b93f79c46e5/An-Introduction-to-Task-Oriented-Programming.pdf
https://www.researchgate.net/profile/Peter_Achten/publication/295505446_An_Introduction_to_Task_Oriented_Programming/links/56e1350d08ae9b93f79c46e5/An-Introduction-to-Task-Oriented-Programming.pdf
https://www.researchgate.net/profile/Peter_Achten/publication/295505446_An_Introduction_to_Task_Oriented_Programming/links/56e1350d08ae9b93f79c46e5/An-Introduction-to-Task-Oriented-Programming.pdf
https://dl-acm-org.ezproxy.elib11.ub.unimaas.nl/doi/pdf/10.1145/3064899.3064905
https://dl-acm-org.ezproxy.elib11.ub.unimaas.nl/doi/pdf/10.1145/3064899.3064905
https://repository.ubn.ru.nl/bitstream/handle/2066/111106/111106.pdf?sequence=1
https://repository.ubn.ru.nl/bitstream/handle/2066/111106/111106.pdf?sequence=1
https://link-springer-com.ezproxy.elib10.ub.unimaas.nl/content/pdf/10.1007%2F3-540-18317-5_20.pdf
https://link-springer-com.ezproxy.elib10.ub.unimaas.nl/content/pdf/10.1007%2F3-540-18317-5_20.pdf
https://github.com/purescript-halogen/purescript-halogen
https://github.com/purescript-halogen/purescript-halogen
https://clean.cs.ru.nl
https://elm-lang.org
https://guide.elm-lang.org/architecture
https://www.purescript.org/
https://haskell-miso.org
https://www.academia.edu/download/44093349/Incidone_A_Task-Oriented_Incident_Coordi20160325-5075-7woz7i.pdf
https://www.academia.edu/download/44093349/Incidone_A_Task-Oriented_Incident_Coordi20160325-5075-7woz7i.pdf
https://github.com/ghcjs/ghcjs
https://repository.ubn.ru.nl/bitstream/handle/2066/214654/214654.pdf?sequence=1
https://repository.ubn.ru.nl/bitstream/handle/2066/214654/214654.pdf?sequence=1
https://link-springer-com.ezproxy.elib10.ub.unimaas.nl/content/pdf/10.1007%2F978-3-030-57761-2_3.pdf
https://link-springer-com.ezproxy.elib10.ub.unimaas.nl/content/pdf/10.1007%2F978-3-030-57761-2_3.pdf
https://dl-acm-org.ezproxy.elib11.ub.unimaas.nl/doi/pdf/10.1145/3205368.3205375
https://dl-acm-org.ezproxy.elib11.ub.unimaas.nl/doi/pdf/10.1145/3205368.3205375
https://www.academia.edu/download/39518337/ITasks_Executable_specifications_of_inte20151029-18594-mn0lg0.pdf
https://www.academia.edu/download/39518337/ITasks_Executable_specifications_of_inte20151029-18594-mn0lg0.pdf
https://repository.ubn.ru.nl/bitstream/handle/2066/103802/103802.pdf
https://docs.servant.dev/en/stable/index.html
https://docs.servant.dev/en/stable/index.html
https://www.snoyman.com/
https://www.yesodweb.com/
https://dl-acm-org.ezproxy.elib11.ub.unimaas.nl/doi/10.1145/3354166.3354182
https://dl-acm-org.ezproxy.elib11.ub.unimaas.nl/doi/10.1145/3354166.3354182
https://link-springer-com.ezproxy.elib11.ub.unimaas.nl/content/pdf/10.1007%2F978-3-030-28346-9_9.pdf
https://link-springer-com.ezproxy.elib11.ub.unimaas.nl/content/pdf/10.1007%2F978-3-030-28346-9_9.pdf
https://link.springer.com/chapter/10.1007/978-3-319-14675-1_8
https://reflex-frp.org/

	Abstract
	1 Introduction
	2 Task Oriented Programming
	2.1 Task-Oriented Programming
	2.2 iTasks
	2.3 TopHat
	2.4 Research question

	3 TopHat User Interface
	3.1 Application
	3.2 Architecture

	4 Related work
	4.1 Functional Reactive Programming
	4.2 User interface frameworks
	4.3 Web servers

	5 Conclusion
	5.1 Future work

	References

