
A flat reachability-based measure for CakeML’s cost semantics
Alejandro Gomez-Londoño
alejandro.gomez@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

Magnus O. Myreen
myreen@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

ABSTRACT
The CakeML project has recently developed a verified cost seman-
tics that allows space cost reasoning of CakeML programs. With
this space cost semantics, compiled machine code can be proven to
have tight memory bounds ensuring no out-of-memory errors occur
during execution. This paper proposes a new cost semantics which
is designed to make proofs about space costs significantly simpler
than they were with the original version. The work described here
has been developed in the HOL4 theorem prover.

CCS CONCEPTS
• Software and its engineering → Formal software verifica-
tion; Compilers.

KEYWORDS
compiler verification, cost semantics, space usage

ACM Reference Format:
Alejandro Gomez-Londoño andMagnus O. Myreen. 2018. A flat reachability-
based measure for CakeML’s cost semantics. InWoodstock ’18: ACM Sym-
posium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Functional languages present programmers with many abstractions
(e.g., polymorphism, garbage collection, ADTs, among others) to
aid them in the development of complex programs. However, these
features often come at the cost of an increase in memory usage
and an unclear space usage; making it difficult to judge whether a
program has enough memory to run.

The CakeML project has recently developed a verified cost se-
mantics [5] which, at its core, uses a measuring function embedded
in the semantics to determine if, at any given point, a program has
run out of memory. The cost semantics has been proved sound,
which means machine code generated by the CakeML compiler will
never produce out-of-memory errors if the CakeML cost semantics
has ruled them out. Unforunately, reasoning using the the original
cost semantics for CakeML requires considerable effort.

This paper improves on the original cost semantics. This paper
defines an alternative space measuring function, which is defined

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

in stages: it first computes the set of reachable nodes, and then com-
putes the sum of the size of the data at those nodes. In contrast, the
old space measuring function did everything at once: it discovered
the reachable part of the heap through recursive descent. The new
formulation is expected to lead to tidier proofs than the previous
measuring function. Our initial experiments suggest that proofs
about space cost are significantly more manageable with the new
formulation.

This paper makes the following contributions:

• In this paper, we define a new reachability-based measuring
function (Section 3), which is designed to be significantly
simpler to work with than the original (Section 2.3).

• We demonstrate (in Section 4) how the new formulation
overcomes some of the most significant problems of the
original formulation.

• Finally, we discuss (in Section 5) ways in which the new
formulation of the space cost semantics can be proved sound
so that future space cost proofs can use the new formulation.

All of this work is machined-checked using the HOL4 theorem in
the context of the CakeML compiler verification project. It should
be noted that this work is currently in an early stage of development,
but of sufficient maturity to be presented at IFL. We are confident
that the main result of this paper can be fully completed in time
for the post-proceedings submission.

2 A VERIFIED COST SEMANTICS
The cost semantics for the CakeML compiler [5] is expressed at the
level of its DataLang intermediate language.

DataLang is an intermediate language approximately in the
middle of the CakeML compiler. It is an imperative intermediate
language with nested tuple-like values and reference pointers, but
no function values. It appears right before memory becomes finite
and the garbage collector is introduced. The semantics ofDataLang
is expressed in the form of a (functional) big-step semantics.

The semantics forDataLang acts as a cost semantics for CakeML
by maintaining a boolean-valued safe_for_space field in the se-
mantic state of the operational semantics. This field is set to false
whenever a semantic space cost measurement predicts that the
current use of space might exceed the configured space limits for
heap or stack space.

This paper focuses on the measurement of heap space. At each
allocation of new memory, the semantics for DataLang computes
the size of the currently live data using a measure called size_-
of. This size_of function computes the space consumption of all
reachable values from the root values obtained from the stack and
global variables. This size_of function is defined to carefully track

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Alejandro Gomez-Londoño and Magnus O. Myreen

aliasing by keeping track of pointer-equal values, and is unchanged
by garbage collection as it only consider live (reachable) data.

To prove the space safety of a CakeML program, one must show
that for some limit—concrete or abstract—the semantics of its Data-
Lang representation never sets safe_for_safe to false. Once
space safety is established, it can be extended all the way to the
level of machine code, thanks to the soundness proof for the cost
semantics w.r.t. to the CakeML compiler.

The rest of this section introduces: the DataLang semantics,
the space semantics, and the definition of the original heap space
measure, i.e. size_of. More details on the original DataLang’s
operational and costs semantics can be found in prior work [5, 9].

2.1 DataLang at a glance
DataLang is an imperative language with abstract values, stateful
storage of local variables, and a call stack. In the compiler-stack,
it sits between the more abstract functional languages and the
low-level languages with word-based value representations.

To give a sense of how CakeML programs look when compiled
into DataLang consider the following CakeML function expressed
in CakeML source syntax (which is very similar to SML syntax).

fun app123 x = let a = [1,2,3] in a ++ x end

This function prepends the list [1,2,3] to its input. The result of
compiling this function to DataLang is shown in Figure 1.

line 0 : app123 [0] evaluates as
line 1 : MakeSpace 9
line 2 : 1 B Cons nil_tag []
line 3 : 2 B Const 3
line 4 : 3 B Cons cons_tag [2; 1]
line 5 : 4 B Const 2
line 6 : 5 B Cons cons_tag [4; 3]
line 7 : 6 B Const 1
line 8 : 7 B Cons cons_tag [6; 5]
line 9 : 8 B ListAppend [7; 0]
line 10 : return 8

Figure 1: DataLang code for a function that prepends
[1,2,3] to its argument

At first, the DataLang presentation of the code might seem
significantly different. However, on closer inspection, we hope the
reader will see the similarity. In DataLang primitive operation are
always assigned (B) to a local variables, which are represented as
natural numbers. On line 0, argument 0 corresponds to the source
code binding x. Line 1 allocates 9 slots of space (that’s 3 slots per
Cons). Line 2 creates a value representing an empty list using the
primitive operation Cons and a number tag (nil_tag) denoting the
nil constructor for lists. In line 3 a Const operation creates the
number literal 3. Line 4 combines local variables 1 ([]) and 2 (3)
into the singleton list [3] using Cons and the corresponding list
constructor tag (cons_tag); using the same process, lines 5 through
8 create the DataLang representation of the list [1,2,3]. Then,
Line 9 applies ListAppend—which appends the two lists-shaped
values—variables 0 (the argument) and 7 ([1,2,3]).

v = Number int
| Word64 word64
| CodePtr num
| RefPtr num
| Block timestamp tag (v list)

Figure 2: DataLang’s abstract values

Primitive values in DataLang are modeled by the data type
presented in Figure 2. Number is an arbitrarily large integer. Word64
is a 64-bit machine word. CodePtr is a code pointer, and RefPtr is
a pointer to mutable state (such as arrays). The Block constructor
represents contiguous values in memory, and encodes datatype
constructors, tuples and vectors.

An example of a DataLang value is shown in Figure 3 which
shows the DataLang. This is a value that can result from a call
to app123 with the empty list as the argument. Block values, with
cons_tag and nil_tag indicate the source-level constructor that
each Block represents. Furthermore, timestamp values 8, 7, and 6
uniquely identify each block.

app123_nil
def
= Block 8 cons_tag [Number 1;

Block 7 cons_tag [Number 2;
Block 6 cons_tag [Number 3;

Block 0 nil_tag []]]]

Figure 3: Block representation of CakeML list [1,2,3]

The semantics state is defined as the record type shown in Fig-
ure 4. The fields locals and refs represent the finite maps of local
variables (v num_map) and references (v ref num_map) respectively.
The stack is a list of frames, each frame containing only the rele-
vant variables that should be restored after a call is completed. The
global field contains an optional reference to an array of global
variables. Space limits are kept in a record with fields for heap and
stack limits. The boolean flag safe_for_space is set to false when
space limits have been exceeded. The remaining fields are not of
relevance for the presentation here.

The semantics of DataLang is defined as a functional big-step
semantics [8]. In this style of semantics, a clocked big-step eval-
uation function, evaluate, takes a (program, state) pair as input,
and returns a (result, state) pair as output. As an example, consider
the evaluation of app123 with the empty list as argument, which
results in value app123_nil. Note that the program is given to
evaluate as a DataLang AST (app123_prog) and arguments are
local variables in the state.

evaluate (app123_prog,
s with locals := { 0 ↦→ Block 0 nil_tag [] })

= (app123_nil, s′)
To better visualize intermediate steps of evaluations, the Data-

Lang semantics can also be expressed as a shallowly embedded
state-exception monad. This is the representation used in app123
which can partially evaluate the first three operations by unfolding
bind applications:

A flat reachability-based measure for CakeML’s cost semantics Woodstock ’18, June 03–05, 2018, Woodstock, NY

𝛼 state = <|
locals : v num_map;
refs : v ref num_map;
stack : stack list;
global : num option;
limits : limits;
safe_for_space : bool;
clock : num;
. . .

|>

ref = ValueArray (v list) | Bytes bool (word8 list)

limits = <|
heap_limit : num;
stack_limit : num;
. . .

|>

Figure 4: The definition of the DataLang state.

app123 (s with locals := { 0 ↦→ Block 0 nil_tag [] })
= (4 B Const 2

5 B Cons cons_tag [4; 3]
6 B Const 1
7 B Cons cons_tag [6; 5]
8 B ListAppend [7; 0]
return 8)
s with <| locals := { 0 ↦→ Block 0 nil_tag []

1 ↦→ Block 0 nil_tag []
2 ↦→ Number 3
3 ↦→ Block 3 cons_tag

[Number 3;
Block 0 nil_tag []] };

. . .

|>

2.2 Embedded cost semantics
As previously stated, DataLang’s costs semantics is embedded
into its operational semantics. Therefore, proving space safety of
app123 is a matter of proving the following statement:

⊢ s.limits.heap_limit = mh ∧
s.limits.stack_limit = ms ∧
s.safe_for_space ∧
evaluate (app123_prog, s) = (res, s′) ⇒
s′.safe_for_space

This is, given stack space mh and heap space ms; the evaluation
of app123_prog preserves safe_for_space, thus signalling that the
program’s memory consumption falls within the given bounds.

Internally, the safe_for_space flag is updated at every space-
consuming operation, for example, at function calls and whenever
new values are created. Auxiliary functions size_of_heap and
size_of_stack are used to update safe_for_space in one of two
ways. If k slots of new heap space are to be used (e.g. as part of

MakeSpace), then safe_for_space is updated as follows:

s with
safe_for_space :=
(s.safe_for_space ∧
size_of_heap s + k ≤ s.limits.heap_limit)

Similarly, if k slots of new stack space are to be comsumed (e.g. as
part of a function call), then safe_for_space is updated as follows:

s with
safe_for_space :=
(s.safe_for_space ∧
size_of_stack s + k ≤ s.limits.stack_limit)

The important work is performed by the size_of_heap and
size_of_stack functions. This paper focuses on improving the
formulation of the heap space measure and thus size_of_heap.

The original formulation of size_of_heap is shown below. Here
stack_to_vs is an auxiliary function that computes a list of root
values from local variables (s.locals), the call-stack (extract_stack),
and global references (global_to_vs). The root values are given to
the measuring function size_of, which computes the size of heap
elements reachable from these initial elements.

size_of_heap s def
=

let (n, _, _) =

size_of (stack_to_vs s) s.refs LN in
n

stack_to_vs s def
=

toList s.locals + +
extract_stack s.stack + +
global_to_vs s.global

The main workhorse of this definition is the size_of function,
which is the topic of the next section.

2.3 The original heap measure: size_of
At the core of DataLang’s cost semantics is the heap space measur-
ing function size_of. This function is responsible for computing
a space consumed by all values reachable from the given values.
Figure 5 shows its definition with seen (a set of timestamps), and
refs as additional arguments.

The measurement of most values (CodePtr, Word64, and Number)
is straightforward, as it is either constant, already accounted for
within another structure (e.g. stack frames), or measured by a func-
tion without considering other values. Whereas, the handling of
Block and RefPtr values is more involve and where most of the
complexity of size_of comes from. In the case of Block values, a
set of already-measured (seen) timestamps is kept to avoid counting
identical blocks multiple times; this mechanisms assumes a bijec-
tion between timestamps and the blocks in memory. For RefPtr,
pointers are removed from references map (refs) once they are
counted, this is to only follow a reference once.

The definition of size_of succeeds at providing tight bounds,
mitigating the effects of aliasing, and traversing all live data; how-
ever, perhaps due to its precise and concrete nature, it can be chal-
lenging to reason about. The main hurdle with size_of is the
linearity of its traversal, where initial measurements at the front

Woodstock ’18, June 03–05, 2018, Woodstock, NY Alejandro Gomez-Londoño and Magnus O. Myreen

size_of [] refs seen def
= (0, refs, seen)

size_of (x :: xs) refs seen def
=

let (n1, refs1, seen1) = size_of xs refs seen ;
(n2, refs2, seen2) = size_of [x] refs1 seen1 in

(n1 + n2, refs2, seen2)
size_of [Word64 v0] refs seen

def
= (3, refs, seen)

size_of [Number i] refs seen def
=

(if is_smallnum i then 0 else bignum_size i, refs, seen)
size_of [CodePtr v1] refs seen

def
= (0, refs, seen)

size_of [RefPtr r] refs seen def
=

case lookup r refs of
None ⇒ (0, refs, seen)

| Some (ValueArray vs) ⇒
(let (n, refs′, seen′) = size_of vs (delete r refs) seen

in
(n + |vs | + 1, refs′, seen′))

| Some (ByteArray v2 bs) ⇒
(|bs | div (arch_size lims div 8) + 2, delete r refs, seen)

size_of [Block ts tag vs] refs seen def
=

if vs = [] ∨ isSome (lookup ts seen) then (0, refs, seen)
else
let (n, refs′, seen′) =

size_of vs refs (insert ts () seen) in
(n + |vs | + 1, refs′, seen′)

Figure 5: Definition of the old size_of.

of the argument list directly affect subsequent ones through point-
ers or timestamps. Thus, conceptually simple properties (e.g. the
reordering of values) are hard to prove and apply.

3 A FLAT REACHABILITY-BASED
MEASUREMENT

This section shows the definition of our new heap cost measuring
function, flat_size_of, which is to replace the original size_of.
In a nutshell, flat_size_of takes a set of root addresses, computes
the set of all addresses reachable from that initial set, and then
sums the size of the heap element that is at one of the reachable
addresses. We will go through the detail below.

First of all, DataLang has no immediate notion of heap address.
For the purposes of the definition of flat_size_of, we define a
type for DataLang addresses. An address is either a timestamp
(TStamp) of a Block (remember each block has a unique timestamp)
or a pointer to a reference (RStamp).

addr = TStamp num | RStamp num

Given a list of root values, we can compute, using to_addr, the
root addresses. Note that this function does not recurse into the
values inside Block, because it only wants to collect the immediate
addresses of these values.

to_addr [] def
= ∅

to_addr (Block ts v0 v1 :: xs)
def
= { TStamp ts } ∪ to_addr xs

to_addr (RefPtr ref :: xs) def
= { RStamp ref } ∪ to_addr xs

The following value kinds do not have addresses in this representa-
tion. We will deal with these in a different way below.

to_addr (Number v4 :: xs)
def
= to_addr xs

to_addr (Word64 v5 :: xs)
def
= to_addr xs

Once the root addresses have been collected, we can neatly com-
pute the set of all reachable addresses using the reflexive transitive
closure (∗) of a next-relation, which is defined further down.

reachable_v refs blocks roots def
=

{ y | ∃ x . x ∈ roots ∧ (next refs blocks)∗ x y }

The next-relation relates an address a to the addresses that are one-
step reachable from a. Here blocks is a mapping from timestamps
to Block values.

next refs blocks (TStamp ts) r def
=

r ∈ block_to_addrs blocks ts
next refs blocks (RStamp ref) r def

=

r ∈ ptr_to_roots refs ref

block_to_addrs blocks ts def
=

case lookup ts blocks of
| Some (Block _ _ vs) ⇒ to_addr vs
| _ ⇒ ∅

ptr_to_roots refs p def
=

case lookup p refs of
| Some (ValueArray vs) ⇒ to_addr vs
| _ ⇒ ∅

With these functions we can state the set of all reachable ad-
dresses as follows.

reachable_v refs blocks (to_addr roots)

Next we need to compute the heap space consumed by a heap ele-
ment at a specific address using size_of_addr. The flat_measure
function will be explained below.

size_of_addr lims refs blocks (TStamp ts) def
=

case lookup ts blocks of
Some (Block _ _ vs) ⇒ 1 + |vs | + flat_measure lims vs

| _ ⇒ 0
size_of_addr lims refs blocks (RStamp p) def

=

case lookup p refs of
None ⇒ 0

| Some (ValueArray vs) ⇒ 1 + |vs | + flat_measure lims vs
| Some (ByteArray _ bs) ⇒ |bs | div (arch_size lims div 8) + 2

In the above definition, we can see that an address of a Block t n vs
has size 1 + |vs | + flat_measure lims vs. Here 1 is the for the
header of the heap element; |vs | is for the length of the payload of
the heap element; and flat_measure lims vs is to account for the
heap elements that are immediately reachable from this block, but
have no address. The definition of flat_measure, shown in Fig-
ure 6, counts Block and RefPtr values as having zero size, because
they are already counted elsewhere.

Now we have a way to compute the set of reachable addresses
and to compute size of a heap element at each address. Our final

A flat reachability-based measure for CakeML’s cost semantics Woodstock ’18, June 03–05, 2018, Woodstock, NY

flat_measure lims [] def
= 0

flat_measure lims (x :: y :: ys) def
=

flat_measure lims [x] + flat_measure lims (y :: ys)
flat_measure lims [Word64 v0]

def
= 3

flat_measure lims [Number i] def
=

if small_num lims.arch_64_bit i then 0
else bignum_size lims.arch_64_bit i

flat_measure lims [Block v13 v14 v15]
def
= 0

flat_measure lims [CodePtr v16]
def
= 0

flat_measure lims [RefPtr v17]
def
= 0

Figure 6: The definition of flat_measure

definition makes use of sum_img which sums the application of a
given function f to all elements of a finite set s.

sum_img f s def
= fold_finite_set (_ a b. f a + b) s 0

The top-level definition of the new heap measure is the follow-
ing. This definition sums the size of all Word64 and large Number
values in the roots using flat_measure. This is added to sum_img
of size_of_addr applied to every reachable address in the heap.

flat_size_of lims refs blocks roots def
=

flat_measure lims roots +
sum_img (size_of_addr lims refs blocks)
(reachable_v refs blocks (to_addr roots))

Even though this definition is very different in formulation from the
original size_of, shown in Figure 5, it computes the same number.

4 IMPROVING ON SIZE_OF
To illustrate the challenges of reasoning about size_of, consider
the following reordering property:

size_of [x, y] refs LN = size_of [y, x] refs LN

Intuitively, this property must hold for a measuring function as the
values considered are the same. However, with size_of both sides
of the equality might perform completely different traversals:

size_of [y] refs LN = (ny1, refsy1, seeny1) ∧
size_of [x] refs LN = (nx1, refsx1, seenx1) ∧
size_of [y] refsx1 seenx1 = (ny2, refsy2, seeny2) ∧
size_of [x] refsy1 seeny1 = (nx2, refsx2, seenx2) ⇒
(ny1 + nx2, refsx2, seenx2) = (nx1 + ny2, refsy2, seeny2)

This mismatch between applications exposes the following prob-
lems:

• There is no straightforward relation between the two mea-
surements of [x] (or those of[y]) as size_of is applied to
different arguments.

• All blocks in [x] and [y] with the same timestamps must
have the same contents; otherwise, the order in which blocks
are counted will affect the result due to aliasing mitigation.

These issues can be overcome by introducing well-formedness
conditions on [x] and [y], and by generalizing the property state-
ment to one more suited for induction (e.g. list permutations). How-
ever, these kinds of hurdles appear more often than one might want
for such a crucial function.

In stark contrast, reordering can be trivially proved for flat_-
size_of. First, a call to flat_measure traverses a list to add non-
root values, and is thus unaffected by permutations. Similarly, the
initial root set computed by to_addr is the union of all addresses in
the list of values and is again unaffected by reordering. Therefore,
the remaining application of sum_img is being applied to the same
arguments.

This ease of reasoning is whatmakes flat_size_of better suited
for proofs of space safety as shown in the rest of this section.

4.1 A layout for space safety proofs
As mentioned before, to prove the space safety of a DataLang pro-
gram one must show the preservation of safe_for_space through
its evaluation (Section 2.2). As most DataLang programs are com-
posed of multiple recursive functions, it is often necessary to sepa-
rately prove space safety for some of them. To prove a function is
space safe, one generally needs three kinds of assumptions:

(A1) The current space consumption is below the limits or roughly
size_of + M ≤ heap_limit, where M is any extra space the
function body needs.

(A2) A description of the arguments to the function, e.g., a list-
shaped block, a number within 0 and 255, among others.

(A3) That the function is defined in s.code and its body corre-
sponds with the code being evaluated

Resulting in the following layout:

⊢ A1 ∧ A2 ∧ A3 ∧
s.safe_for_space ∧
evaluate (fun_body, s) = (res, s′) ⇒
s′.safe_for_space

Proofs are by complete induction on the semantic clock and sym-
bolic evaluation of the function body. Assumption (A2) should allow
the evaluation of most of the function body. Moreover, interme-
diate updates to safe_for_space can be resolved using (A1). Once
the recursive call is reached, assumption (A3) replaces the function
call with the function’s body such that the inductive hypothesis
can be applied. At this point in the proof, assumptions must be
established again for the state at the function call. (A3) is trivial as
s.code does not change. (A2) might require work, but well-formed
function code correctly operates on its values and thus provides
good arguments. The proof of (A1) shown below is where things
are more likely to become tricky:

⊢ . . .

size_of_heap s + M s ≤ s.limits.heap_limit ⇒
size_of_heap s′ + M s′ ≤ s′.limits.heap_limit

Here, we must show that the space required at the recursive call
(size_of_heap s′ + M s′) is still less than heap_limit, assuming
the space was enough in the original call. This amounts to proving

Woodstock ’18, June 03–05, 2018, Woodstock, NY Alejandro Gomez-Londoño and Magnus O. Myreen

that the required space decreases as the function recurses:

⊢ . . . ⇒
size_of_heap s′ + M s′ ≤ size_of_heap s + M s

This follows the intuition that function calls should take either
progressively less space, or require an extra amount of memory
bounded by M .

4.2 A tail recursive example
Consider a hypothetical tail-recursive function ftail with the
following features:

• Takes a list of numbers as argument.
• Operates over the head of the list consuming constant space.
• Makes a tail-recursive call with the tail of the list.

Now assume we wanted to prove ftail space safe for concrete
argument [1,2,3]. Instantiating the proof layout from the previous
section, we arrive at the proof goal shown below:

⊢ size_of_heap s + C ≤ s.limits.heap_limit ∧
lookup ′′ftail′′s.code = Some ftail_body ∧
s.locals =

{ 0 ↦→ Block 8 cons_tag [Number 1,
Block 7 cons_tag [Number 2, . . .]]} ∧

s.safe_for_space ∧
evaluate (ftail_body, s) = (res, s′) ⇒
s′.safe_for_space

Where C is the (constant) space the function uses to operate.
Using assumptions (A1), (A2), and (A3), most of the proof can pro-

ceed by evaluation; until the tail recursive call to ftail is reached
and we must establish assumption (A1) again:

size_of_heap s′ ≤ size_of_heap s

Which by definition of size_of_heap and the abbreviation of
extract_stack s.stack ++ global_to_vs s.global as rest simpli-
fies to:

size_of ([Block 7 cons_tag [Number 2, . . .]]] + + rest)
refs LN

≤
size_of ([Block 8 cons_tag [Number 1,

Block 7 cons_tag [Number 2, . . .]]] + + rest)
refs LN

And given the equality size_of rest refs LN = (n,refs′,seen) can
be rewritten further to:

size_of [Block 7 cons_tag . . .] refs′ seen ≤
size_of [Block 8 cons_tag . . .] refs′ seen

At this point, it would appear the proof is almost done, as we
are essentially testing if the space occupied by a list ([1,2,3]) is
greater than that of its tail ([2,3]), which it must be. However,
due to size_of’s handling of timestamps and the fact that seen
is symbolic, one can not show this inequality without additional
assumptions. Concretely, one can think of a scenario where from
the timestamps in the block only 8 is in seen; this will result in the

measurement being 0 at the right of the inequality and 4 on the left,
a clear falsehood.

8 ∈ seen ∧ 7 ∉ seen ∧ . . . ∧
size_of [Block 7 . . .] refs′ seen = (4, refs′′, seen′′) ∧
size_of [Block 8 . . .] refs′ seen = (0, refs′′′, seen′′′) ⇒
4 ≤ 0

Therefore, the proof goal must be extended with a predicate
ensuring that if timestamps 8 is in seen it must be the case that 7
and all other subsequent timestamps in the list are also in seen.

Proving such predicate and all its associated lemmas takes con-
siderable work, to the point that, similar mechanisms in existing
space safety proofs take around 25% of the Theory file. The issue is
further aggravated by the fact that this kind of predicates can not
be easily generalized for all types of values and must be re-written
every time a new type is used.

If we were to switch our reasoning to flat_size_of our proof
goal could be greatly simplified:

flat_size_of refs blocks ([Block 7 . . .] + + rest)
≤
flat_size_of refs blocks ([Block 8 . . .] + + rest)

While we can no longer “drop” rest from the roots, flat_size_of
more than makes up for this with its use of sets and relations to
represent the reachable memory. To showcase this, consider the
following lemma:

flat_measure lims x = flat_measure lims x ∧
reachable_v refs blocks (to_addrs x) ⊆

reachable_v refs blocks (to_addrs y) ⇒
flat_size_of lims refs blocks x ≤

flat_size_of lims refs blocks y

Which states that if the reachable set of addresses from two roots
x and y are subsets, then the space measurement of x done by
flat_size_of must be less than that of y. Using this lemma the
proof goal becomes trivial:

{TStamp 7} ∪ reachable_v . . . (to_addrs rest)
⊆ {TStamp 8, TStamp 7} ∪ reachable_v . . . (to_addrs rest)

This would conclude the proof with little more than basic set rea-
soning.

Is this ease of reasoning in the presence of (possibly) aliased
values what makes flat_size_of a suitable measuring function
for a cost semantics. In particular, the reachability-based approach
to gathering live data aids the function, and its reasoning, to not be
concerned with “where” a value is or how it is structured, and focus
solely in its effect on the space measurement. In contrast, reasoning
about size_of constantly requires additional safeguards structural
guarantees that should only concern the memory model.

5 SOUNDNESS
At the time of submission, we have not yet started proving sound-
ness of the new version of the cost semantics. However, our inten-
tion is to prove soundness of the new cost semantics so that all
future uses of CakeML’s space cost semantics can make use of this
improved formulation that we have presented in this paper.

There are two options for proving soundness: (1) soundness of
the new formulation can be proved w.r.t. the original formulation;

A flat reachability-based measure for CakeML’s cost semantics Woodstock ’18, June 03–05, 2018, Woodstock, NY

or (2) the old formulation could be replaced by the new formulation
in the definition of the DataLang semantics. Option (1) is neatly
self-contained to mostly a proof about the relationship between the
old and the new space measures. However, if the new formulation
is to truly replace the old one, then option (2) is the right way to go,
even though it requires redoing some fiddly proofs in the middle
of the correctness proofs of the CakeML compiler. At the time of
writing, we are leaning towards option (2), since we do not want
the old one to become a burden for proof maintenance.

We expect to have soundness of the new version of the cost
semantics proved by IFL’s post-proceedings deadline.

6 RELATEDWORK
Work on verified cost semantics of verified compiler is available
for the CompCert [7] and CakeML [6] compilers. Carbonneaux
et al. [4] develop a source level logic for stack space reasoning that
translates to the CompCert compiler output. Besson et al. extends
CompCert’s memory model with finite memory and integer point-
ers in CompCertS [1–3]; which allows for memory usage estimates
of C functions that are proven to be bounds of the compiled code.
The cost semantics of the CakeML compiler [5] is to our knowledge
the only verified costs semantics for a high-level garbage-collected
language and as such is a good candidate for further research in
the topic.

7 CONCLUSION
This paper has proposed a new flat reachability based heap space
cost measure for CakeML’s verified space cost semantics. Early
experiments suggests that the new formulation of the heap measure
is significantly more pleasant to use in proofs of space safety. We
plan to replace the original formulation of the heap measure with
this new one. The hope is that the new formulation will make
reasoning of space cost scale beyond simple examples.

REFERENCES
[1] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2014. A Precise and Abstract

Memory Model for C Using Symbolic Values. In Programming Languages and
Systems, Jacques Garrigue (Ed.). Springer International Publishing, Cham, 449–
468.

[2] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2015. A Concrete Memory
Model for CompCert. In Interactive Theorem Proving. Springer International Pub-
lishing, Cham, 67–83.

[3] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2019. CompCertS: A Memory-
Aware Verified C Compiler Using a Pointer as Integer Semantics. Journal of
Automated Reasoning 63, 2 (01 Aug 2019), 369–392.

[4] Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong Shao.
2014. End-to-end Verification of Stack-space Bounds for C Programs. SIGPLAN
Not. 49, 6 (June 2014), 270–281.

[5] Alejandro Gómez-Londoño, Johannes Åman Pohjola, Hira Taqdees Syeda, Mag-
nus O. Myreen, and Yong Kiam Tan. 2020. Do you have space for dessert? a verified
space cost semantics for CakeML programs. Proc. ACM Program. Lang. 4, OOPSLA
(2020), 204:1–204:29. https://doi.org/10.1145/3428272

[6] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014.
CakeML: a verified implementation of ML. In The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego,
CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM,
179–192. https://doi.org/10.1145/2535838.2535841

[7] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Communications
of the ACM 52, 7 (2009). https://doi.org/10.1145/1538788.1538814

[8] Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan. 2016.
Functional Big-Step Semantics. In European Symposium on Programming (ESOP)
(Lecture Notes in Computer Science), Peter Thiemann (Ed.). Springer, 589–615.

[9] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony C. J. Fox, Scott
Owens, and Michael Norrish. 2019. The Verified CakeML Compiler Backend. J.
Funct. Program. 29 (2019), e2. https://doi.org/10.1017/S0956796818000229

https://doi.org/10.1145/3428272
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1017/S0956796818000229

	Abstract
	1 Introduction
	2 A verified cost semantics
	2.1 DataLang at a glance
	2.2 Embedded cost semantics
	2.3 The original heap measure: size_of

	3 A flat reachability-based measurement
	4 Improving on size_of
	4.1 A layout for space safety proofs
	4.2 A tail recursive example

	5 Soundness
	6 Related Work
	7 Conclusion
	References

