
Solving the Funarg Problem with Static Types
Caleb Helbling
caleb@purdue.edu
Purdue University

West Lafayette, Indiana, USA

Fırat Aksoy
firat.aksoy@ogr.iu.edu.tr

Istanbul University
Istanbul, Turkey

ABSTRACT
The difficulty associated with storing closures in a stack-based
environment is known as the funarg problem. The funarg problem
was first identified with the development of Lisp in the 1970s and
hasn’t received much attention since then. The modern solution
taken by most languages is to allocate closures on the heap, or
to apply static analysis to determine when closures can be stack
allocated. This is not a problem for most computing systems as there
is an abundance of memory. However, embedded systems often
have limited memory resources where heap allocation may cause
memory fragmentation.We present a simple extension to the prenex
fragment of System F that allows closures to be stack-allocated. We
demonstrate a concrete implementation of this system in the Juniper
functional reactive programming language, which is designed to
run on extremely resource limited Arduino devices. We also discuss
other solutions present in other programming languages that solve
the funarg problem but haven’t been formally discussed in the
literature.

CCS CONCEPTS
• Software and its engineering→ Procedures, functions and
subroutines; Functional languages.

KEYWORDS
funarg, closure, stack, heap, memory, functional, embedded
ACM Reference Format:
Caleb Helbling and Fırat Aksoy. 2021. Solving the Funarg Problem with
Static Types. In IFL ’21: ACM Symposium on Implementation and Application
of Functional Languages, September 01–03, 2021, Online. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The funarg problem refers to the difficulty associated with compi-
lation of first-class functions in programming languages for stack-
based environments. The problem arises in the bodies of nested
functions where the nested function refers to identifiers defined
in the parent function’s lexical scope which are not available in
it’s own lexical scope. The standard solution is to allocate closures
on the heap. There are two variants of this problem: upwards and
downwards. The upwards funarg problem refers to themanagement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL ’21, September 01–03, 2021, Online
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

of the stack when a function returns another function (that may
potentially have a non-empty closure), whereas the downwards
funarg problem refers to the management of the stack when a func-
tion is passed to another function (that may also have a non-empty
closure).

Solving the upwards funarg problem is considered to be much
more difficult than the downwards funarg problem. The downwards
funarg problem is easily solved by copying the closure’s lexical
scope (captured variables) to the top of the program’s stack. For
the upwards funarg problem, an issue arises with deallocation. A
returning function may capture local variables, making the size of
the closure dynamic. Due to this behavior, the closure itself cannot
be copied down the stack without causing stack corruption. We
must keep in mind that, as soon as the function returns, any local
variables will be lost when they are popped off the stack.

In 1968, Weizenbaum [12] made an analysis of function closures
using lambda calculus, and showed that function closures in lambda
calculus cannot have a stack based data structure and must in fact
consist of a tree. Moses [9] further analyzed the problem for the
Algol programming language. Early attempts to solve the funarg
problem [10] appear to be hampered by a number of factors, includ-
ing dynamic scoping, lack of static types and mutable variables.

Despite the titles of these early papers, we contend that the fu-
narg problem (in particular, the upwards funarg problem) has not
been adequately solved. In our approach, we solve the upwards
funarg problem by statically determining a closure’s size at compile
time. This allows the closure from the upwards funarg problem to
be copied into the calling function, as if it were any other statically
sized piece of data. Since the type of a closure’s lexical scope can be
viewed as a structural record type, we can make our language poly-
morphic over closures and their lexical scopes. This allows higher
order functions such as map (downwards funarg problem) and com-
pose (upwards and downwards funarg problem) to be written very
concisely and naturally.

Analyzing closures from a type theoretic perspective is not a new
exercise [1, 6–8]. These papers prefer to treat closures as explicit
environments, whose type is determined by an existential. This is
not helpful to solving the funarg problem, since existentials are
typically treated as boxed values and must be allocated on the heap.
Therefore our contribution is unique in the sense that we seek to
solve the funarg problem rather than analyzing closures from a
purely type theoretic environmental perspective.

1.1 Contributions
We describe the following contributions:

• We demonstrate how the prenex fragment of System F can
be extended to enable stack allocated closures.

• We discuss a concrete implementation of this approach in
the Juniper programming language.

https://orcid.org/0000-0002-6118-3061
https://orcid.org/0000-0003-3109-9544
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

IFL ’21, September 01–03, 2021, Online Helbling and Aksoy

Expressions
𝑒 := 𝑥 | _𝑥 : 𝐴.𝑒 | 𝑒1 𝑒2 | Λ𝛼.𝑒 | 𝑒 𝐴

Type Schemes
𝜎 := 𝐴 | ∀𝑎.𝜎

Types
𝐴, 𝐵,𝐶 := 𝛼 | 𝐴 −𝐶 → 𝐵 | 𝛿

Lexical Scope Types
𝛿 := {𝑥0 : 𝐴0, ..., 𝑥𝑛 : 𝐴𝑛}

Values
𝑣 := (_𝑥 .𝑒) [Δ] | Λ.𝑒

Contexts
Γ ::= ∅ | Γ, 𝛼 | Γ, 𝑥 : 𝐴

Environments
Δ := {𝑥0 ↦→ 𝑣0, ..., 𝑥𝑛 ↦→ 𝑣𝑛}

Table 1: Grammar

• We analyze the limitations of the extension and identify the
connection between types and closures.

• We make an analysis of other approaches found in exist-
ing programming languages, but haven’t been discussed
formally in the literature.

2 EXTENDING SYSTEM F
In this section, we restrict and extend System F to enable stack
allocated closures. We restrict System F to it’s prenex fragment
which separates regular System F types into type schemes and types
for practical reasons that will be explained later. This is a necessary
restriction to prevent the emergence of existential types in the type
system which prevents determining the sizes of types at compile-
time. The primary addition is that of the closure types, which are
defined as function types with their lexical scopes attached to them.
The lexical scopes 𝛿 are either type variables or records of captured
variables and their respective types. These lexical scope types are
are considered equivalent if both the field names and the types
of those fields are identical. These additions make it possible for
closures to be polymorphic and enable stack allocation of the closure
since the size of the closure is known statically at compile-time.
Table 1 defines the grammar of our language.

2.1 Big-step semantics
Stack allocation of closures require the lambda values and their lex-
ical scopes to be propagated and used in pairs. For this reason, we
combine the lambda values with their environments into a single
value representation. When a lambda is applied, a flat representa-
tion of the lambda’s lexical scope is constructed and used as the
environment along with the lambda’s argument for further evalua-
tion. Figure 1 presents the big-step semantics for our language.

𝑣 = Δ(𝑥)
Δ ⊢ 𝑥 ⇓ 𝑣

[EVAL-VAR]

Δ ⊢ _𝑥 : 𝐴.𝑒 ⇓ (_𝑥 .𝑒) [{𝑦 ↦→ Δ(𝑦) | 𝑦 ∈ fv(_𝑥 : 𝐴.𝑒)}]
[EVAL-ABS]

Δ1 ⊢ 𝑒1 ⇓ (_𝑥 .𝑒3) [Δ2] Δ1 ⊢ 𝑒2 ⇓ 𝑣 ′ Δ2, 𝑥 ↦→ 𝑣 ′ ⊢ 𝑒3 ⇓ 𝑣

Δ1 ⊢ 𝑒1 𝑒2 ⇓ 𝑣

[EVAL-APP]

Δ ⊢ Λ𝛼.𝑒 ⇓ Λ.𝑒
[EVAL-TABS]

Δ ⊢ 𝑒1 ⇓ Λ.𝑒2 Δ ⊢ 𝑒2 ⇓ 𝑣

Δ ⊢ 𝑒1𝐴 ⇓ 𝑣
[EVAL-TAPP]

Figure 1: Big step semantics

2.2 Typing
Figure 2 presents the typing rules for our language. There are sev-
eral changes made to the type rules for the prenex fragment of
System F. Of primary interest is the T-ABS rule which also con-
structs the type of the lexical scope. The construction of the lexical
scope itself is performed by T-DELTA, which finds all free variables
within the lambda, looks up their type in Γ and returns the cor-
responding lexical scope type. The rule T-TABS is also changed to
restrict type abstractions to contain no free variables themselves
which simplifies the type system and assists in compilation to a
stack based environment.

2.3 Examples
In this section, we will look at two examples that demonstrate that
our solution for the funarg problemworks for accurately typing two
of the most commonly used functions in functional programming:
map and compose. For the map example, we will assume that
the type system is enriched with a list type constructor. The type
of these functions are considerably more noisy than the standard
System F types. Fortunately, most of the noise can be elided through
type inference.

𝑚𝑎𝑝 : ∀𝛼.∀𝛽.∀𝛿.(𝛼−𝛿 → 𝛽)−{} → 𝛼 list−{𝑓 : 𝛼−𝛿 → 𝛽} → 𝛽 list

For the compose example we give the definition of compose as
well as its type in our System F extension.

𝑐𝑜𝑚𝑝𝑜𝑠𝑒 := Λ𝛼.Λ𝛽.Λ𝛾 .Λ𝛿1 .Λ𝛿2 .

_𝑓 : (𝛽 − 𝛿1 → 𝛾)._𝑔 : (𝛼 − 𝛿2 → 𝛽) ._𝑥 : 𝛼.𝑓 (𝑔 𝑥)

Solving the Funarg Problem with Static Types IFL ’21, September 01–03, 2021, Online

𝑥 : 𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴
[T-VAR]

Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 Γ ⊢ _𝑥 : 𝐴.𝑒 ⇝ 𝛿

Γ ⊢ _𝑥 : 𝐴.𝑒 : 𝐴 − 𝛿 → 𝐵
[T-ABS]

Γ ⊢ 𝑒1 : 𝐴 − 𝛿 → 𝐵 Γ ⊢ 𝑒2 : 𝐴
Γ ⊢ 𝑒1 𝑒2 : 𝐵

[T-APP]

Γ, 𝛼 ⊢ 𝑒 : 𝜎 fv(𝑒) = ∅
Γ ⊢ Λ𝛼.𝑒 : ∀𝛼.𝜎 [T-TABS]

Γ ⊢ 𝑒 : ∀𝛼.𝜎
Γ ⊢ 𝑒 𝐴 : 𝜎 [𝛼 := 𝐴] [T-TAPP]

𝑦𝑖 ∈ fv(_𝑥 : 𝐴.𝑒) Γ ⊢ 𝑦0 : 𝐶0, ..., Γ ⊢ 𝑦𝑛 : 𝐶𝑛

Γ ⊢ _𝑥 : 𝐴.𝑒 ⇝ {𝑦0 : 𝐶0, ..., 𝑦𝑛 : 𝐶𝑛}
[T-DELTA]

Figure 2: Typing rules.

𝑐𝑜𝑚𝑝𝑜𝑠𝑒 : ∀𝛼.∀𝛽.∀𝛾 .∀𝛿1 .∀𝛿2 .
(𝛽 − 𝛿1 → 𝛾) − {} → (𝛼 − 𝛿2 → 𝛽) − {𝑓 : 𝛽 − 𝛿1 → 𝛾} → 𝛼

− {𝑓 : 𝛽 − 𝛿1 → 𝛾, 𝑔 : 𝛼 − 𝛿2 → 𝛽} → 𝛾

3 LIMITATIONS AND EXTENSIONS
Themost obvious limitation of the extension presented in this paper
is that all branches in a program that return a closure must have
the exact same lexical scope. One would think that this would be
a problem since in most languages, branches of conditionals may
return lambdas with different lexical scopes, as long as the types are
equivalent. A close analysis of the cond function in System F when
combined with Church-encoded Boolean values true and false
reveals a surprising result, this problem simply does not appear in
the extension described in this paper.

To further elucidate our point, we define cond operator as a
function which takes in a true branch and a false branch and a
Church-encoded Boolean value (as described in equations 3, 4, 5,
and 6) and returns the respective branch in relation to it’s Boolean
input.

cond := Λ𝛼.Λ𝛽.Λ𝛾 .Λ𝛿

_𝑡 : 𝛼._𝑓 : 𝛽._𝑐 : (𝛼 − {} → 𝛽 − 𝛿 → 𝛾).𝑐 𝑡 𝑓 (1)

cond : ∀𝛼.∀𝛽.∀𝛾 .∀𝛿.
𝛼−{} → 𝛽−{𝑡 : 𝛼} → (𝛼−{} → 𝛽−𝛿 → 𝛾)−{𝑡 : 𝛼, 𝑓 : 𝛽} → 𝛾

(2)

true := Λ𝛼.Λ𝛽._𝑡 : 𝛼._𝑓 : 𝛽.𝑡 (3)

true : ∀𝛼.∀𝛽.𝛼 − {} → 𝛽 − {𝑡 : 𝛼} → 𝛼 (4)

false := Λ𝛼.Λ𝛽._𝑡 : 𝛼._𝑓 : 𝛽.𝑓 (5)

false : ∀𝛼.∀𝛽.𝛼 − {} → 𝛽 − {} → 𝛽 (6)
Applying the cond operator with true and false in equations

7 and 8 reveals why Church-encoding does not suffer from the
branching problem. In System F, the branch chosen by cond is
already present in the type system by selecting the type for 𝛾 .
Fundamentally, this occurs because true and false have different
type signatures, that also determine the branch taken.

((cond𝛼 𝛽 𝛼 {𝑡 : 𝑎}) 𝑡 𝑓 (true𝛼 𝛽)) : 𝛼 (7)

((cond𝛼 𝛽 𝛽 {}) 𝑡 𝑓 (false𝛼 𝛽)) : 𝛽 (8)
However, in a language with sum types and pattern matching

(as Boolean types are in most languages), the branching problem
with closures will be present. Whether or not this is a major issue
is debatable, however, we can say for certain that this removes
some generality from our approach. An interesting approach to
recovering this generality is a paper on open closures by Scherer
and Hoffmann [11], however their approach only applies to simply
typed lambda calculus and not for System F.

The second limitation appears under the presence of mutually
recursive functions. When compiling top level functions, we can
consider their closure to be empty since we can refer to them using a
simple function pointer. For inner functions that are often mutually
recursive, the situation is more complicated. The lexical scope of all
functions declared in a let-rec block can be constructed by taking
the union of all of the lexical scopes of all the functions declared
in the block. This constructs a common lexical scope that can be
passed to all the related functions. Therefore, all functions declared
in the let-rec block will have identical lexical scope types.

When one function in the let-rec block calls another function
in the same let-rec block, it simply passes the lexical scope that it
was passed. Within the lexical scope type itself, we place all the
functions within the let-rec block with the non-closure function
type 𝐴 → 𝐵. This indicates that this function should be passed the
lexical scope that this function is contained within.

Extending the system presented in this paper to the impredicative
System F at first glance seems feasible. We believe that the funarg
problem is orthogonal issue to that of first-class polymorphism and
stack allocated existential types. However we have yet to make
a full analysis of how the lexical environments presented here
interact with System F. One possible issue that may crop up is
subtle interactions with existential types, which can be encoded in
System F [2].

4 IMPLEMENTATION
We have implemented the closure system given here in Juniper [3],
a functional reactive programming language for the Arduino. The
Juniper language transpiles all of its code to C++. The analysis of
C++ in section 5 reveals the issues facing the use of lambdas as a
transpile target. To work around the issues presented in that section,

IFL ’21, September 01–03, 2021, Online Helbling and Aksoy

we implement our own function class. This class is constructed
by passing in a lexical scope, along with a function pointer. In C++,
lambda types that do not capture anything can be casted to type
safe function pointers. We provide our own stack allocated closure
support by passing in the lexical scope as the first argument to
the underlying lambda function. Within this lambda, the compiler
inserts variable assignments which extracts the contents of the
lexical scope into local variables. Lambdas that do not capture
anything are not passed a lexical scope.

1 template <typename ClosureType , typename Resu l t , typename
. . . Args >

2 c l a s s f u n c t i o n ;
3
4 template <typename Resu l t , typename . . . Args >
5 c l a s s f unc t i on <void , R e s u l t (Args . . .) > {
6 pr ivate :
7 R e s u l t (∗ F) (Args . . .) ;
8
9 public :
10 f u n c t i o n (R e s u l t (∗ f) (Args . . .)) : F (f) { }
11
12 R e s u l t operator () (Args . . . a r g s) {
13 return F (a r g s . . .) ;
14 }
15 } ;
16
17 template <typename ClosureType , typename Resu l t , typename

. . . Args >
18 c l a s s f unc t i on <ClosureType , R e s u l t (Args . . .) > {
19 pr ivate :
20 ClosureType C lo su r e ;
21 R e s u l t (∗ F) (C losureType & , Args . . .) ;
22
23 public :
24 f u n c t i o n (ClosureType c l o su r e , R e s u l t (∗ f) (C losureType

& , Args . . .)) : C l o su r e (c l o s u r e) , F (f) { }
25
26 R e s u l t operator () (Args . . . a r g s) {
27 return F (Closure , a r g s . . .) ;
28 }
29 } ;

A lexical scope struct is defined for every combination of environ-
ment names discovered in the program. The types of the variables
are made generic, so that these lexical scope structs can be declared
before any of the other types in the program. Below is an example
of the lexical scope struct generated by the Juniper compiler for
the compose function. These structs are created and passed to
the function constructor the moment the lambda declared. This
ensures that the closure contains a snapshot of the current envi-
ronment. Importantly, if a mutation of any local variables occurs
after a closure has been constructed, the closure will not be updated
(since it essentially takes a snapshot of the local environment the
moment it is created). For purely functional languages this is not
an issue since variables cannot be mutated.

1 / / Compose l e x i c a l s c o p e
2 template <typename T1 , typename T2>
3 s t ruc t c l o s u r e t _ 0 {
4 T1 f ;
5 T2 g ;
6
7 c l o s u r e t _ 0 (T1 i n i t _ f , T2 i n i t _ g) :
8 f (i n i t _ f) , g (i n i t _ g) { }
9 } ;

5 EXISTING APPROACHES
In this section we will analyze a number of different existing lan-
guages and how they solve the funarg problem. To our knowledge
the system presented in this paper is the only language that will
allow the type of a closure to be fully written out with text (ie, it
does not generate an implicit type or class).

In C++, each declaration of a lambda implicitly declares a new
class [4] and therefore type in the system. Since these classes are
auto-generated, it is impossible to write their types using text, and
programmers must rely on the auto keyword. These C++ lambdas
are indeed stack allocated since their underlying representation
is a class with a operator() defined. The problems begin however
as soon as you start passing around or returning lambdas. Higher
order functions that consume lambdas must be made generic over
all of these implicit lambda classes. This makes it is impossible to
add any sort of constraints on the types of the arguments of the
lambda, or the return type of the lambda. Returning a lambda also
becomes very annoying, and the auto keyword must be used as the
return type. Once again, we see that it is impossible to constrain the
return type to anything in particular. The solution used bymost C++
programmers is to make use of the standard library std::function,
which turns the stack allocated closure into a heap allocated entity.
Perhaps in the future, clever use of C++ concepts could add extra
type safety to the use of these implicit lambda classes.

To our knowledge, the only other language that has similar
capabilities to what is presented in this paper is Rust [5]. Just as
in C++, the Rust system operates by generating a unique type for
every closure. However Rust goes a step further with its trait system.
Like in C++, accepting a closure as a parameter to another function
requires the use of a single generic parameter. Unlike C++, the
type of this parameter can be constrained with traits. Additionally,
returning a closure requires the textual use of one of these traits.

6 FUTUREWORK
In the future we would like to further extend our type system for
enriched languages. We are interested in how adding conditionals
and sum types to the language will force changes in the handling
of the lexical scopes. We also would like to give a more thorough
description of how to handle the let-rec case.

We would also like to extend this system for the impredicative
System F without restrictions as much as possible, which we predict
to potentially force additional changes in the representation of the
lexical scopes.

7 CONCLUSION
In this paper we have described an extension to the prenex fragment
of System F that solves the funarg problem. Our solution solves
both the downwards and the upwards funarg problem and allows
closures to be completely stack allocated. Functional languages
can take advantage of this new system to optimize memory usage,
and this extension is particularly useful on embedded systems. We
also discuss extensions to our language and identify the possibility
to extend this work to solve the conditional problem as well as
stack allocation for first-class polymorphism. We discussed how
existing languages solve the funarg problem, and conclude that

Solving the Funarg Problem with Static Types IFL ’21, September 01–03, 2021, Online

our approach is the first so far that allows writing closure type
signatures without auto-generated types or classes.

REFERENCES
[1] William J Bowman and Amal Ahmed. 2018. Typed closure conversion for the

Calculus of Constructions. (Aug. 2018). arXiv:1808.04006 [cs.PL]
[2] Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and types. Vol. 7.

Cambridge university press Cambridge.
[3] Caleb Helbling and Samuel Z Guyer. 2016. Juniper: a functional reactive program-

ming language for the Arduino. In Proceedings of the 4th International Workshop
on Functional Art, Music, Modelling, and Design. 8–16.

[4] ISO. 2017. ISO/IEC 14882:2017 Information technology — Programming languages
— C++ (fifth ed.). 1605 pages. https://www.iso.org/standard/68564.html

[5] Nicholas D Matsakis and Felix S Klock II. 2014. The rust language. In ACM
SIGAda Ada Letters, Vol. 34. ACM, 103–104.

[6] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. 1996. Typed closure
conversion. In Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on

Principles of programming languages - POPL ’96 (St. Petersburg Beach, Florida,
United States). ACM Press, New York, New York, USA.

[7] GregMorrisett and Robert Harper. 1998. Typed closure conversion for recursively-
defined functions. Electron. Notes Theor. Comput. Sci. 10 (1998), 230–241.

[8] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. 1999. From system F
to typed assembly language. ACM Trans. Program. Lang. Syst. 21, 3 (May 1999),
527–568.

[9] Joel Moses. 1970. The function of FUNCTION in LISP or why the FUNARG
problem should be called the environment problem. SIGSAM Bull. 15 (July 1970),
13–27.

[10] Erik Sandewall. 1971. A proposed solution to the FUNARG problem. SIGSAM
Bull. 17 (Jan. 1971), 29–42.

[11] Gabriel Scherer and Jan Hoffmann. 2013. Tracking Data-Flow with Open Closure
Types. In Logic for Programming, Artificial Intelligence, and Reasoning. Springer
Berlin Heidelberg, 710–726.

[12] Joseph Weizenbaum. 1968. The funarg problem explained. unpublished memo-
randum, MIT (1968).

https://arxiv.org/abs/1808.04006
https://www.iso.org/standard/68564.html

	Abstract
	1 Introduction
	1.1 Contributions

	2 Extending System F
	2.1 Big-step semantics
	2.2 Typing
	2.3 Examples

	3 Limitations and Extensions
	4 Implementation
	5 Existing Approaches
	6 Future Work
	7 Conclusion
	References

