
On Mapping 𝑁 -Dimensional Data-Parallelism Efficiently into
GPU-Thread-Spaces

Niek Janssen
niek.janssen@student.ru.nl

Radboud University
Nijmegen, Netherlands

Sven-Bodo Scholz
SvenBodo.Scholz@ru.nl
Radboud University

Nijmegen, Netherlands

ABSTRACT
Data-Parallelism on multi-dimensional arrays can be conveniently
specified by mapping element-computations to all elements of 𝑛-
dimensional index-spaces. This paper proposes a small set of com-
binators for mapping multi-dimensional index spaces into multi-
dimensional thread-index spaces suitable for execution on GPUs.
For each combinator, we provide an inverse operation, that allows
the original indices to be recovered within the individual threads.
This setup allows arbitrary 𝑛-dimensional array computations to
be executed on GPUs with arbitrary thread-space constraints as
long as the overall resources required for the computation do not
exceed those provided by the GPU.

KEYWORDS
SaC, CUDA, GPU, array transformations, functional languages

ACM Reference Format:
Niek Janssen and Sven-Bodo Scholz. 2021. On Mapping 𝑁 -Dimensional
Data-Parallelism Efficiently into GPU-Thread-Spaces. In Proceedings of IFL
21: ACM Symposium on implementation and application of functional lan-
guages (IFL 21). ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
For many performance hungry application areas such as scien-
tific computations, financial applications, image processing or AI,
algorithms can be conveniently expressed as data-parallel oper-
ations on 𝑛-dimensional arrays. Languages such as Futhark[10],
Accelerate[6], Lift[16], or SaC [15] have demonstrated that such
algorithms can be mapped into very efficient GPU codes. How-
ever, obtaining high-performance for a wide variety of such array
algorithms poses many challenges. Amongst these are decisions
about data representations in memory, memory allocation strate-
gies, memory transfer optimisations, decisions about which parts
to actually compute in parallel, as well as how to map these parallel
computations onto the hardware.

This paper focusses on the last of the challenges mentioned
above. We assume that we have a given computation that needs to
be executed in parallel for a set of indices into an 𝑛-dimensional

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL 21, September 01–03, 2021, Online
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

index space and that each such instance of the computation requires
the 𝑛-element index it relates to. The challenge now is to come up
with a thread-space that can be readily executed on a given GPU.

Given that GPUs support up to 6-dimensional thread-spaces, one
might be inclined to consider this a non-issue: often a one-to-one
correspondence between index-space and thread-space might do.
Unfortunately, there are several issues with this approach. First
of all, GPUs have constraints on the possible thread ranges and,
secondly, the maximally possible thread-space dimensionality is
fixed.

A better alternative is to flatten the index space completely and
then cut this index as required by a given GPU’s hardware re-
quirements. The drawback of this approach is that recovering the
original indices can be costly, in particular, when dealing with
higher-dimensional arrays.

In this paper, we propose a more flexible approach. We identify a
set of combinators for mapping 𝑛-dimensional index spaces into𝑚-
dimensional thread-spaces. Each of these combinators comes with
a dedicated inverse mapping which allows to recover the original
indices. That way, either the programmer can annotate a desired
mapping or the compiler can infer a mapping so that the thread-
space is as close as possible to the original index-space reducing
costly index-recovery-operations to a minimum.

The individual contributions of the paper are

• we propose a set of combinators for transforming index-
spaces

• we outline an implementation in the context of the compiler
infra-structure for SaC, and

• we discuss a few strategies for attributing given computa-
tions with suitable strategies for given GPU targets

2 SAC
SaC (Single assignment C) [3] is a functional programming language
build around multidimensional arrays. Each array in SaC consists of
the array data and the shape of the array. The data part contains the
array elements, while the shape part contains information about
the dimensionality and the lengths of those dimensions. The shape
can be accessed through a built-in function shape, and is a one-
dimensional array itself.

In listing 1, we will discuss some exapmles and facts about SaC
arrays.

/ / D e c l a r e a r r ay x
x = [[1 , 2 , 3] , [4 , 5 , 6]] ;

/ / The shape o f x can be r e q u e s t e d
/ / w i th t h e shape f u n c t i o n

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

IFL 21, September 01–03, 2021, Online Niek Janssen and Sven-Bodo Scholz

p r i n t (shape (x)) ;
/ / [2 , 3]

/ / Note t h a t t h e d im e n s i o n a l i t y o f x
/ / i s e qua l t o t h e l e n g t h o f shape (x)
p r i n t (l e ng t h (shape (x))) ;
/ / 2

/ / A new a r r ay can a l s o be g e n e r a t e d
/ / u s i n g t h e S t d l i b f u n c t i o n g ena r r ay .
/ / g ena r r ay t a k e s a shape and a d e f a u l t
/ / e l emen t
p r i n t (gena r ray ([2 , 3] , 4 2) ;
/ / [[4 2 , 4 2 , 4 2] , [4 2 , 4 2 , 4 2]]

/ / Array e l em e n t s can be a c c e s s e d u s i n g
/ / i n d e x v e c t o r s :
i v = [1 , 1] ;
p r i n t (x [i v]) ;
/ / 5

Listing 1: Some SaC examples and facts

2.1 The with-loop
At the heart of the SaC programming language is the with-loop. A
with-loop can be compared to the map function in the map-reduce
computation model, although the with-loop is more flexible. A with-
loop creates a new array using a given shape, and fills it with data
in the manner defined in its body. A with loop consists of roughly
three parts:

• A default array x. The shape of this array will be taken as
the shape of the result and its elements are used as default
elements.

• An index space S, defining which indices iv of array x have
to be replaced with new values.

• A body, containing an expression which computes the new
value at any given index vector iv.

A pair of an index space and a body is called a partition. A with
loop can have multiple partitions, as shown in listing 2.

a = with {
(index − space) : { body− e xp r e s s i o n } ;
(index − space) : { body− e xp r e s s i o n } ;

} : default − a r r ay ;
Listing 2: The schematic of a SaC with-loop

An index space is defined using a quadruple of four shape vectors
(L, U, T, W), and a variable identifier. In the body expression, this
variable contains the current index vector. The four shape vectors
define which indexes are mapped in a partition. Using iv as variable
identifier, we can define the constraints on the index space:

• Lower bound L (optional): L <= iv, restrict to indexes greater
or equal to L

• Upper bound U: iv < U, restrict to indexes strictly smaller
then U

• Step T and Width W (optional): iv % T < W, Every T
elements, take W elements. If W is omitted, a vector of suitable
length with all values being 1 is assumed.

In case of overlapping partitions, the semantics of SaC guarantees
a top to bottom execution. Taking all this together, we can define a
with-loop like this:

a = with {
([0 , 1] <= i v < [9 , 8]

s t e p [2 , 3] width [1 , 2])
: 3 ;

([1 , 0] <= i v < [8 , 9]
s t e p [3 , 2] width [2 , 1])
: 7 ;

} : g ena r ray ([9 , 9] , 0) ;
Listing 3: An example usage of a SaC with-loop

Which creates a 2-dimensional array with the following output:
0 3 3 0 3 3 0 3 0
7 0 7 0 7 0 7 0 7
7 3 7 0 7 3 7 3 7
0 0 0 0 0 0 0 0 0
7 3 7 0 7 3 7 3 7
7 0 7 0 7 0 7 0 7
0 3 3 0 3 3 0 3 0
7 0 7 0 7 0 7 0 7
0 3 3 0 3 3 0 3 0

The formal semantics of the with-loops including further vari-
ants of with loops for modifying arrays, reducing arrays, and per-
forming non-deterministic operations on unique objects can be
found elsewhere [14][11].

2.2 With-loop execution
We can conceptualize the execution of a partition in a with-loop in a
few subsequent steps. Firstly, we have an index space descriptor as a
tuple of the four shape vectors L, U, T, W as defined above. Secondly,
we have an index generator that computes all index vectors inside
this index space descriptor. We call this set of index vectors an index
space. Thirdly, we have the partition body, which transforms each
index into a value. These values are then put in the resulting array
on the correct positions.

Of course, this is only an abstract way of describing a with loop.
When generating target-specific optimised code, the current SaC
compiler sac2c takes special care when arranging the order in
which indices are being generated and for some targets it also takes
the liberty to interleave different partitions in order to improve
locality (see [8][7] for example).
Index space descriptor
(lb, ub, step, width)

|
| SaC Index generator
V

Index space
({[10, 10], [10, 11], ...})

On Mapping 𝑁 -Dimensional Data-Parallelism Efficiently into GPU-Thread-Spaces IFL 21, September 01–03, 2021, Online

|
| Partition body expression:
| 37
V

Values

It is important to note that the compiler sac2c re-arranges with-
loops massively during optimisation, ensuring that eventually there
are no overlapping index sets within any with-loop and trying to
ensure that further partitions are added to cover the entire legal
index space, whenever possible. New partitions are typically being
added when all partitions have a lower bound, upper bound, step
or width and the compiler cannot be sure that all space has been
covered by those partitions. We will discuss an example of such a
with loop.

Example of a with-loop where multiple partitions spawned. All
numbers below are indexes on the x and y axis.

With loop size: [7,7]
L = [1,1]
U = [6,6]
T = [3,2]
W = [2,1]

00 01 02 03 04 05 06
10 11 12 13 14 15 16
20 21 22 23 24 25 26
30 31 32 33 34 35 36
40 41 42 43 44 45 46
50 51 52 53 54 55 56
60 61 62 63 64 65 66

Firstly, the original (explicit) partition will cover it’s own index
space. Secondly, there will be four partitions covering the space
above the upper bound and below the lower bound:

.. 00 01 02 03 04 05 06

.. 11 12 .. 14 15 .. 10 16

.. 20 26

.. 31 32 .. 34 35 .. 30 36

.. 40 46

.. 51 52 .. 54 55 .. 50 56

.. 60 61 62 63 64 65 66

And lastly there will be two partitions covering the space be-
tween the step and width:

..

.. 13

.. 21 22 23 24 25

.. 33

.. 41 42 43 44 45

.. 53

..

So in the end, for this with-loop with seemingly one partition, 7
partitions are actually created.

2.3 CUDA and SaC
The CUDA programming model is very similar to the programming
model of a with-loop. Similarly to a with-loop, CUDA performs
operations on elements of an index space which we will refer to as
thread-space. Where a with-loop uses a body with an expression,
CUDA uses a function with arguments and a return value, but in
effect a CUDA and a SaC operation uses the same concept: they
execute a piece of code for each element of a certain index space.

In principle, because the programming models are so similar, it
should be easy to utilise CUDA to execute with-loops on the GPU.
We could just give the information about the index space to a CUDA
thread space generator, wrap the expression body in a function,
and let CUDA execute this function for each index vector.

Index space
(lb, ub, step, width)

|
| CUDA Index generator
V

Index/Thread space
({[10, 10], [10, 11], ...})

|
| Partition body function:
| \iv -> 42
V

Values

The current implementation of the SaC compiler contains a
mechanism to generate CUDA code, created by Jing Guo [9]. This
implementation follows the approach described above. Currently,
roughly the following steps are implemented to make this work:

• Identify with-loops eligible for Cuda kernel execution: Not
all with-loops can be implemented using CUDA. CUDA can-
not handle function calls to external functions for example,
so all with-loops containing such function calls cannot be
implemented using CUDA.

• Insert memory transfer primitives: GPU memory is separate
from CPU memory, so necessary data has to be transferred
to and from the GPU before and after the computations
respectively.

• Create kernel functions: The creation of the functions wrap-
ping the partition body expressions.

• The CUDA Index generator is given the index space infor-
mation and it creates the kernel functions are run for each
index in the index space.

3 LIMITATIONS ON CUDA AND HOW TO
SOLVE THEM

Though the implementation created by Jing’s works very well in
many cases, there are still cases where it either performs rather
poorly or does not work at all. The reason for this is fairly simple:
SaC index spaces are more flexible and can handle cases which

IFL 21, September 01–03, 2021, Online Niek Janssen and Sven-Bodo Scholz

CUDA’s thread spaces simply cannot. To make matters more chal-
lenging, the concrete restrictions on a CUDA thread space can vary
with each hardware device. Generally, older CUDA hardware has
more restrictive constraints then newer devices, but this is not
always the case.

The differences between SaC and CUDA index spaces can be
summarized into four catagories:

• SaC index spaces can have a lower bound bigger then zero,
from where the execution should start. CUDA index spaces
have an implicit lower bound which is always a vector of
zeros.

• SaC index spaces support a step and a width, CUDA index
spaces do not.

• There are constraints on the number of dimensions a CUDA
index space supports, as well as on the lengths of those di-
mensions. SaC does not have these constraints: the number
and lengths of these dimensions can be any finite number,
as long as the hardware can support the memory size / pro-
gram execution time / integer sizes. To make matters more
complicated, too little dimensions or an imperfect balance
of the lengths of the dimensions can reduce performance.

• CUDA spawns the hardware threads in so called warps. Be-
cause of this, program execution has the best performance
if the length of the innermost (last) dimension is a multiple
of the warp size ‘x‘, where ‘x‘ may again vary between hard-
ware devices. This is not really a hard constraint, but the
performance penalty is big enough to treat it as such.

The current implementation deals with some of these issues in a
very crude way. The lower bound is handled perfectly, but the step
and width are handled by masking the executing threads, effectively
sacrificing parallelism. The constraints on the dimensionality and
lengths of dimensions is by far the most challenging problem to
solve, and the current implementation is based on some target-
hardware-specific heuristics and, in some cases, cannot produce a
working solution at all. Finally, the warp size constraint is fulfilled
only when the dimensionality is at most two. This is, however, more
of a side effect of how threads are spawned in these cases, then a
real intended effect.

Though constraints on dimensionality, lengths of dimensions
and warp sizes may vary across hardware devices, there are also a
lot of similarities. First of all, the dimensionality is split between
3 block dimensions and 2 or 3 grid dimensions. The block dimen-
sions can handle only smaller lengths, and the product of the block
dimensions has got a constraint too. On a GTX 1060, for example,
the product of the block dimensions has a limit of 1024. The grid
dimensions can handle bigger lengths, but this may also vary per
dimension.

3.1 Proposed solution
The general idea to solve this problem is that we are going to
transform the original SaC index space into an index space that
fits into the CUDA architecture. Before we give the index space
descriptor (the tuple of L, U, T, W) to the index generator, we
transform it to a dense thread space which can be described by only
an upper bound U that fits the CUDA index space requirements.
Then, in the partition body function, CUDA provides the grid and

block coordinates. From these coordinates, we recompute an index
in the original SaC index space. After both transformations have
been completed, exactly the same indexes should be generated as in
the original CPU implementation of the index generator allowing
us to use the very some body code.

combinators
SaC Index ---> CUDA Index
space desc space desc
(L, U, T, W) (U)

|
CUDA index generator |

|
V

combinators
SaC Index space <--- CUDA Index space
({iv0, iv1, ...}) {iv0, iv1, ...})

|
| Partition body function
| (\iv -> 42)
V

Values
({42, 42, ...})

Because we have to accommodate for the broad spectrum of with-
loops SaC supports, it is nearly impossible to implement one single
transformation to handle all cases. Things are even trickier when
trying to come up with a mapping that yields good performance
for any given architecture.

In order to allow for experimentation and possible auto-tuning,
we propose a set of combinators for transforming index spaces.
These can be attributed to individual with-loops either by means
of pragma annotations of the programmer, or by some form of
inference mechanism through the compiler or a runtime system.

Each combinator by itself comes with two transformations which
are inverse to each other, guaranteeing a bijection between the index
space and the thread space.

4 INDEX SPACE TRANSFORMATIONS
In this section, we introduce the combinators for transforming the
index spaces into thread spaces suitable for GPUs. We start with an
informal description, motivate their need, and discuss the expected
performance impact due to index transformations at runtime.

Note that each combinator is only responsible for generating
code in two places: one in the host function just before the threads
are spawned, and one in the kernel function executed on the GPU.
As the latter is performed by all threads we focus on the code in
the kernel function when we discuss performance cost.

4.1 𝑆ℎ𝑖 𝑓 𝑡𝐿𝐵

This combinator shifts the index space by the lower bound and thus
makes the thread space start from index 0 within all dimensions.
In doing so, we reflect the restriction of CUDA’s thread spaces to
always start with 0. The overhead for regaining the original indices
of this mapping amount to one scalar addition in each dimension.

On Mapping 𝑁 -Dimensional Data-Parallelism Efficiently into GPU-Thread-Spaces IFL 21, September 01–03, 2021, Online

While a more generic shift operation would be possible without
incurring any immediate additional overhead, it turns out that
restricting the shift to the lower bound is not only sufficient in
all cases but also desirable: it guarantees the normalisation of the
lower bound to 0s which simplifies most of the other combinators
significantly.

Example index space transformation with 𝑆ℎ𝑖 𝑓 𝑡𝐿𝐵. Here with the
index space L = [1, 1], U = [6,6], T = [1,2], W = [1,1]
on the left and the thread space with L = [0,0] U = [5, 5], T
= [2,2], W = [1,1] on the right:
11 .. 13 .. 15 00 .. 02 .. 04
21 .. 23 .. 25 10 .. 12 .. 14
31 .. 33 .. 35 20 .. 22 .. 24
41 .. 43 .. 45 ---> 30 .. 32 .. 34
51 .. 53 .. 55 40 .. 42 .. 44

The original indices can be recovered by subtracting 1 in each
dimension.

4.2 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝐺𝑟𝑖𝑑

This combinator condenses grids into thread spaces that can be
described without step (T) and width (W). It reflects CUDA’s lack of
a notion of non-dense grids.

To make the inverse mappings for recovering the original indices
simpler, we require the original index space to have a lower bound
of all 0s. Note here, that 𝑆ℎ𝑖 𝑓 𝑡𝐿𝐵 can be used to achieve this.

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝐺𝑟𝑖𝑑 obtains an extra parameter which needs to be of
the same length as the dimensionality of the index space. All entries
of this parameter either need to be 1 or 0 depending on whether
the corresponding dimension is to be compressed or not.

Example index space transformationwith𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝐺𝑟𝑖𝑑 ([1,0]).
Here with the index space L = [0, 0], U = [5,5], T = [2,2],
W = [1,1] on the left and the thread space with L = [0,0] U =
[3, 5], T = [1,2], W = [1,1] on the right:
00 .. 02 .. 04 00 .. 02 .. 04
.. 10 .. 12 .. 14
20 .. 22 .. 24 ---> 20 .. 22 .. 24
..
40 .. 42 .. 44

A compression with parameter [1,1] would affect both dimen-
sions and yield a thread space L = [0,0] U = [3, 3], T = [1,1],
W = [1,1]:
00 .. 02 .. 04 00 01 02
.. 10 11 12
20 .. 22 .. 24 ---> 20 21 22
..
40 .. 42 .. 44

Non-surprisingly, index recovery is dimension-specific and only
applies to those dimensions whose corresponding compression
parameter is 1. The method of recovering the original indexes
depends on the value of W in the dimension of concern. If W, as in
the example, is 1, a multiplication with step value (here 2) suffices.

However, if a width other than 1 is present, we need to uncom-
press the indexes in blocks the size of the width. Consider the
following example: given an index space L = [0, 0], U = [5,5],

T = [3,1], W = [2,1] on the left and we apply 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝐺𝑟𝑖𝑑

([1,0]). This yields a thread space L = [0, 0], U = [4,5], T
= [1,1], W = [1,1]:
00 01 02 03 04 00 01 02 03 04
10 11 12 13 14 10 11 12 13 14
.. ---> 20 21 22 23 24
30 31 32 33 34 30 31 32 33 34
40 41 42 43 44

The recovery of the original index in the outermost dimension
now requires several operations as we need to identify the sub-block
and the position within that sub-block independently. In general,
we have:

i d x _ i = (t h r e a d _ i / w id th_ i) ∗ s t e p _ i
+ i d _ i % wid th_ i ;

In the example that translates into

i dx_0 = (t h r e ad_0 / 2) ∗ 3 + th r e ad_0 % 2 ;

yielding idx_0 == 3 for thread_0 == 2.
Note here, that we do not require any dimensions to be com-

pressed. While this avoids the costly recovery cost of the original
indices, it entails that some of the spawned CUDA threads will
simply not contribute to the result. Consequently, this trades par-
allelism for compute complexity. Most likely, compression is only
beneficial whenever the grid density is low enough that the gain in
parallelism outweighs the index recovery overhead.

4.3 𝐹𝑜𝑙𝑑𝐿𝑎𝑠𝑡2
𝐹𝑜𝑙𝑑𝐿𝑎𝑠𝑡2 allows the two innermost (rightmost) dimensions to
be folded into a single dimension. This is a functionality needed
to reduce the overall dimensionality of the index set. It caters to
CUDA’s limitation to a maximum number of dimensions supported
by the hardware. Current GPUs typically support a maximum of 6
dimensions. Similar to𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝐺𝑟𝑖𝑑 , 𝐹𝑜𝑙𝑑𝐿𝑎𝑠𝑡2 requires the lower
bounds to be all 0s. Additionally, it requires the steps and widths to
be all 1s, and the dimensionality of the index space to be at least 2.

Example index space transformation with 𝐹𝑜𝑙𝑑𝐿𝑎𝑠𝑡2. Given an
index space with L = [0, 0], U = [2,5], T = [1,1], W =
[1,1], an application of 𝐹𝑜𝑙𝑑𝐿𝑎𝑠𝑡2 yields a thread space L = [0],
U = [10], T = [1], W = [1]:

00 01 02 03 04 ---> 0 1 2 3 4 5 6 7 8 9
10 11 12 13 14

Recovering the original indices only affects the innermost dimen-
sion of the thread-space. We can regain the first of the two folded
indices by dividing the thread index by the innermost index shape
(here 5). The second index requires a modulo operation with the
same value.

4.4 𝑆𝑝𝑙𝑖𝑡𝐿𝑎𝑠𝑡

Dual to 𝐹𝑜𝑙𝑑𝐿𝑎𝑠𝑡2, 𝑆𝑝𝑙𝑖𝑡𝐿𝑎𝑠𝑡 allows the innermost dimension to be
split up into two dimensions. This is needed to cater for situations
where there is just one dimension or where the last dimension
is too big for a given GPU to handle. This combinator requires a
parameter indicating the shape of the new innermost dimension.

IFL 21, September 01–03, 2021, Online Niek Janssen and Sven-Bodo Scholz

Again, we demand the lower bounds to be all 0s and the steps and
width to be all 1s.

In contrast to 𝐹𝑜𝑙𝑑𝐿𝑎𝑠𝑡2, there is no guarantee that the dimension
to be slit divides by the given parameter. In case it does not, the
index recovery needs to identify the threads that relate to no indices
of the original index space.

Example index space transformation with 𝑆𝑝𝑙𝑖𝑡𝐿𝑎𝑠𝑡 (4). Given
an index space with L = [0], U = [10], T = [1], W = [1] and an
application of 𝑆𝑝𝑙𝑖𝑡𝐿𝑎𝑠𝑡 (4), we obtain a thread space L = [0, 0],
U = [3,4], T = [1,1], W = [1,1] with the last two threads
being disabled:
0 1 2 3 4 5 6 7 8 9

|
V

00 01 02 03
10 11 12 13
20 21

In principle, the original index can be recovered by multiplying
the first of the new dimension’s thread number with the parameter
(here 4) and adding the second thread number. However, in general,
we finally have to check against the original shape (here 10). This
allows us to detect the two disabled threads.

4.5 𝑃𝑎𝑑𝐿𝑎𝑠𝑡

Even in situations where a change in dimensionality is not needed
it sometimes is advisable to adjust the overall shape. A typical
example for such a use case is the innermost dimension of the thread
space. GPUs typically operate in so-called warps[1]. These are fixed
numbers of hardware units that are scheduled simultaneously. It
usually is advisable to choose the innermost dimension as a multiple
of these. 𝑃𝑎𝑑𝐿𝑎𝑠𝑡 allows us to do exactly this. This combinator
takes a number as parameter and adjusts the innermost shape to a
multiple of that size. 𝑃𝑎𝑑𝐿𝑎𝑠𝑡 does not require any values for lower
bound, step or width.

Example index space transformation with 𝑃𝑎𝑑𝐿𝑎𝑠𝑡 (4). Given an
index space with L = [0,0], U = [5,7], T = [1,1], W = [1,1] and an
application of 𝑃𝑎𝑑𝐿𝑎𝑠𝑡 (4), we obtain a thread space L = [0, 0],
U = [5,8], T = [1,1], W = [1,1] with the last thread in the
innermost dimension being disabled:
00 01 02 03 04 05 06 00 01 02 03 04 05 06 07 ..
10 11 12 13 14 15 16 10 11 12 13 14 15 16 17 ..
20 21 22 23 24 25 26 20 21 22 23 24 25 26 27 ..
30 31 32 33 34 35 36 ---> 30 31 32 33 34 35 36 37 ..
40 41 42 43 44 45 46 40 41 42 43 44 45 46 47 ..

For 𝑃𝑎𝑑𝐿𝑎𝑠𝑡 , the original index space is retained by a checking
of the innermost thread index against the original shape.

4.6 𝑃𝑒𝑟𝑚𝑢𝑡𝑒

Our final combinator is 𝑃𝑒𝑟𝑚𝑢𝑡𝑒 . It requires a vector parameter
which describes the desired permutation. This vector needs to con-
tain the numbers of all dimensions of the index space to be mapped
starting from 0. The position of each number indicates which dimen-
sion in the thread space contains that number’s original dimension’s
indices.

Being able to permute index spaces arbitrarily is a very powerful
transformation. Not only does it allow is to apply other combinators
such as 𝑆𝑝𝑙𝑖𝑡𝐿𝑎𝑠𝑡 or 𝐹𝑜𝑙𝑑𝐿𝑎𝑠𝑡2 to arbitrary dimensions and, thus,
adjust any any dimension if needed, it also allows optimisations
due to memory access pattern such as coalescing [1].

Example index space transformationwith 𝑃𝑒𝑟𝑚𝑢𝑡𝑒 ([1,0]). Given
an index space with L = [0,0], U = [5,7], T = [1,1], W = [1,1] and an
application of 𝑃𝑒𝑟𝑚𝑢𝑡𝑒 ([1,0]), we obtain a thread space L = [0,
0], U = [8,5], T = [1,1], W = [1,1]

00 01 02 03 04 05 06 00 01 02 03 04
10 11 12 13 14 15 16 10 11 12 13 14
20 21 22 23 24 25 26 20 21 22 23 24
30 31 32 33 34 35 36 ---> 30 31 32 33 34
40 41 42 43 44 45 46 40 41 42 43 44

50 51 52 53 54
60 61 62 63 64

Themost interesting aspect of this transformation is that it comes
virtually at no overhead. All that is required is a permutation of
thread indices which can be implemented statically by the code
generator.

5 THE SAC COMPILER
In this section, we outline those component’s of the existing SaC
compiler sac2c [3] that pertain to the execution on GPUs.

The SAC compiler takes any SAC program, transpiles it into C
code, and calls a C compiler to compile it into machine code. In case
of code generation for GPUs the compiler produces CUDA code
and calls NVIDEA’s C compiler nvcc.

5.1 CUDA kernel creation
When the compiler compiles a SaC program for the CUDA backend,
it will do so using a few different steps. There are, among others, a
step that determines what loops are to be converted to CUDA code,
steps that insert the correct memory transfers to get arrays to and
from the GPU, and steps that generate the CUDA kernel. For our
problem, we are interested in the step where the CUDA kernels are
generated. More information about the other steps involved can be
found in Jing’s paper of the original implementation [9].

We will now discuss how a with loop is converted to CUDA code
in the old version of the compiler. We will use the running example
as specified in listing 4.

/ / L e t t h e r e be an a r r ay a
b = with {

([0] <= i v < [1 . 0 0 0] s t e p [2]) : a [i v] + 1 ;
([1 . 0 0 0] <= i v < [1 . 5 0 0]) : a [i v] + 4 ;

} : g ena r ray ([1 . 5 0 0] , 0) ;
Listing 4: An example with-loop with two partitions

As we discussed in section 2.2, there will be an additional parti-
tion generated to fill the gaps created by the step. This is illustrated
in listing 5.

/ / L e t t h e r e be an a r r ay a
b = with {

([0] <= i v < [1 . 0 0 0] s t e p [2]) : a [i v] + 1 ;

On Mapping 𝑁 -Dimensional Data-Parallelism Efficiently into GPU-Thread-Spaces IFL 21, September 01–03, 2021, Online

([1] <= i v < [1 . 0 0 0] s t e p [2]) : 0 ;
([1 . 0 0 0] <= i v < [1 . 5 0 0]) : a [i v] + 4 ;

} : g ena r ray ([1 . 5 0 0] , 0) ;
Listing 5: Implicitly generated partitions are added to the
with-loop

The SaC compiler will then generate kernels and calls to those
kernels for those three partitions. Each kernel function will contain
the body of the partition it was created for. Variables containing
the lower bound, upper bound, step and width will be passed in as
an argument. All GPU pointers to SaC arrays needed to execute
the body are passed in as arguments as well. The current iv can
be derived from the variables threadIdx and blockIdx, which both
contain the properties x, y and z. Listing 6 shows what code will be
created for the first partition.

/ / Ho s t CPU cod e :
/ / Launch k e r n e l f o r p a r t i t i o n 0
dim3 g r i d = . . .
dim3 b lo ck = . . .

k e rne l_0 < gr id , b lock >(
1 , 1 . 0 0 0 , 2 , 1 , a , b) ;

. . .

void ke rn e l _ 0 (
lb_0 , ub_0 , s t_0 , wi_0 , a , b) {

/ / Recompute i v from
/ / t h r e a d I d x and b l o c k I d x
i v = . . .

b_d [i v] = a_d [i v] + 1 ;
}
Listing 6: The SaC compiler will generate CUDA kernels for
each partition

5.2 Grid and block
In listing 6, there are a few lines of code left undefined. One of
those open spaces is the definition of the grid and block. In this
section, we will discuss the implementation of the grid and block
computation. The original implementation is pretty straightfor-
ward. Let us define the lengths of the dimensions as 𝑑0 ...𝑑𝑛 . 𝑑0 is
the outermost dimension, and 𝑑𝑛 is the innermost one. Now we
make a case distinction for the first five dimensionalities, and map
them as described in table 1. For 6 or more dimensions, the current
implementation gives a compiler error. Note that each GPU has a
maximum block size. Because we do not know the shapes of the
arrays in SAC at compile time, the implementation for dimension-
alities 3-5 may throw a runtime error when this maximum block
size is exceeded.

This implementation, however, only uses the lengths of the di-
mensions. A SaC index space is defined by a lower bound, upper
bound, step and width. Jing solved this by substracting the lower
bound from the upper bound, exactly as we do in our 𝑆ℎ𝑖 𝑓 𝑡𝐿𝐵

d grid.z grid.y grid.x blk.y blk.x
1 1 1 𝑑0/32 + 1 1 32
2 1 𝑑0/32 + 1 𝑑1/32 + 1 32 32
3 1 1 𝑑0 𝑑1 𝑑2
4 1 𝑑0 𝑑1 𝑑2 𝑑3
5 𝑑0 𝑑1 𝑑2 𝑑3 𝑑4

Table 1: Case distinction for mapping n-dimensional index
spaces onto the GPU, using Jing’s heuristics

combinator. The step and width do not change the size of the di-
mensions at all, in Jing’s solution. For our three partitions, the grid
and block computation is shown in listing 7

/ / Ho s t CPU cod e :
/ / Launch k e r n e l f o r p a r t i t i o n 0
/ / We t a k e t h e uppe r bound , d e v i d e i t by 3 2 ,
/ / and add a padd ing o f 1 t o make s u r e no
/ / i n d i c e s a r e l o s t .
dim3 g r i d = dim3 (1 , 1 , 1 . 0 0 0 / 32 + 1) ;
dim3 b lo ck = dim3 (1 , 1 , 3 2) ;

ke rne l_0 < gr id , b lock >(
0 , 1 . 0 0 0 , 2 , 1 , a , b) ;

/ / Launch k e r n e l f o r p a r t i t i o n 1
/ / The l owe rbound i s no t 0 , s o we have t o
/ / s u b s t r a c t i t .
dim3 g r i d = dim3 (1 , 1 , (1 . 0 0 0 − 1) / 32 + 1) ;
dim3 b lo ck = dim3 (1 , 1 , 3 2) ;

ke rne l_1 < gr id , b lock >(
1 , 1 . 0 0 0 , 2 , 1 , a , b) ;

/ / Launch k e r n e l f o r p a r t i t i o n 2
dim3 g r i d = dim3 (1 , 1 , (1 . 5 0 0 − 1 . 0 0 0)

/ 32 + 1) ;
dim3 b lo ck = dim3 (1 , 1 , 3 2) ;

ke rne l_2 < gr id , b lock >(
1 . 0 0 0 , 1 . 5 0 0 , 1 , 1 , a , b) ;

Listing 7: The grid and block are computed for all three par-
titions

5.3 Index recovery
Inside the kernel, the original iv is reconstructed from the threadIdx
and blockIdx variables. For dimensionalities 3 to 5, we can di-
rectly take the values of blockIdx.z, blockIdx.y, blockIdx.x,
threadIdx.y and threadIdx.x. However, for dimensionalities 1
and 2, iv_0 and iv_1 have to be recomputed, and because the di-
mension length has been padded to be divisible by 32, we also have
to check it against the original dimension length.

IFL 21, September 01–03, 2021, Online Niek Janssen and Sven-Bodo Scholz

The old implementation handles the lower bound the same way
as our 𝑆ℎ𝑖 𝑓 𝑡𝐿𝐵 mapping. The step and width are removed with an if
statement, similar to the if-statement used to prune excess elements
after splitting them over block.x and grid.x. After combining all
of this together, we can define our index recoveries for the three
partitions in our example. The generated code for this can be seen
in listing 8.

/ / P a r t i t i o n 0 , i n s i d e t h e k e r n e l
/ / Recompute i v from
/ / t h r e a d I d x and b l o c k I d x
i v _ 0 = t h r e a d I d x . x + g r i d I d x . x ∗ 3 2 ;
/ / Remove e x c e s s i n d i c e s o u t s i d e o f g r i d
i f (i v _ 0 % s t _ 0 > 0) return ;
/ / Remove e x c e s s i n d i c e s above uppe r bound
i f (i v _ 0 >= 1 . 0 0 0) return ;

/ / P a r t i t i o n 1 , i n s i d e t h e k e r n e l
l b_0 , ub_0 , s t_0 , wi_0 , a , b) {
/ / Recompute i v from
/ / t h r e a d I d x and b l o c k I d x
i v _ 0 = t h r e a d I d x . x + g r i d I d x . x ∗ 3 2 ;
/ / Remove e x c e s s i n d i c e s o u t s i d e o f g r i d
i f (i v _ 0 % s t _ 0 > 0) return ;
/ / I n c r e a s e i v by t h e l owe rbound aga in
i v _ 0 += 1 ;
/ / Remove e x c e s s i n d i c e s above uppe r bound
i f (i v _ 0 >= 1 . 0 0 0) return ;

/ / P a r t i t i o n 2 , i n s i d e t h e k e r n e l
/ / Recompute i v from
/ / t h r e a d I d x and b l o c k I d x
i v _ 0 = t h r e a d I d x . x + g r i d I d x . x ∗ 3 2 ;
/ / The r e i s no g r i d he r e , s o t h e g r i d ch e c k
/ / can be om i t t e d
/ / I n c r e a s e i v by t h e l owe rbound aga in
i v _ 0 += 1 . 0 0 0 ;
/ / Remove e x c e s s i n d i c e s above uppe r bound
i f (i v _ 0 >= 1 . 5 0 0) return ;

Listing 8: Index recovery of the three partitions fromexample
4

6 COMBINATOR IMPLEMENTATIONS
The goal of our combinators is to replace the implementation given
in sections 5.2 and ??. In section 7, we will discuss how we will
determine what combinators will get executed, and in what order. In
this section, we will assume this information is all readily available
as a of combinator applications with their parameters. As all pre-
processing has already been done, we only have to change the code
generation at two parts of the compiler: the point where the index
space is computed as 3d grid/block shapes, and the point where the
SaC index vector is recomputed from the thread coordinates.

Because we are dealing with code on two different levels, we will
try to distinguish them as much as possible. When talking about
code, data structures, or algorithms in the compiler, we will talk
about compiler level. Any outputted code will be referred to as
application level.

6.1 𝐺𝑒𝑛 and 𝐺𝑟𝑖𝑑𝐵𝑙𝑜𝑐𝑘

All the mappings we defined before take an index space, and result
in an index space. However, we need a way to retrieve the index
space for the first mapping, and split the dimensions of the resulting
index space into a grid and block dimensions. To do this, we intro-
duce two new combinators: 𝐺𝑒𝑛 takes no arguments, and returns
the original index space for the current partition. It is used as the
innermost function for the nesting of combinators.𝐺𝑟𝑖𝑑𝐵𝑙𝑜𝑐𝑘 takes
the index space as a result of the outermost combinator, and the
number of block dimensions as an integer parameter. It splits the
dimensions between block and grid dimensions, and creates the
block and grid variables in the application code.

6.2 Generated code
Until now, we have considered the lower bound, upper bound, step,
width and index vectors to be vectors. At the application level how-
ever, we will represent them as individual integer variables. At the
compiler level we will still have vectors, but they will contain the
variable names (as strings) of those individual variables at applica-
tion level. This means that for any dimensionality 𝑛, we will have
4𝑛 or 5𝑛 variables at application level. It is not always 5𝑛, because
the index vector does not exist when we are computing the index
space before the kernel is started.

To illustrate this, we will use the example in listing 9. The state-
ment #pragma gpukernel precedes the nesting of function calls.

/ / Our example i s 2− d imen s i o na l , w i th unknown
/ / d imen s i on l e n g t h s .
in t [. , .] p lu sone (in t [. , .] a) {

b = with {
/ / # pragma gpuk e r n e l p r e c e d e s t h e n e x t i n g
/ / o f c omb ina t o r a p p l i c a t i o n s . The
/ / i n n e rmo s t c omb ina t o r i s a lways Gen ,
/ / t h e o u t e rmo s t i s a lways G r i dB l o c k .
#pragma gpukerne l

Gr idB lock (1 ,
S p l i t L a s t (3 2 ,
S h i f t LB (
Gen)))

(0 <= i v < shape (a)) : a [i v] + 1 ;
} : g ena r ray (shape (a) , 0) ;
return b ;

}

Listing 9: Example with loop, with a pragma to specify the
combinators to be executed

The SaC code in listing 9 will generate the C code in listing 10. In
the comments we will specify the compiler state if applicable. The
nesting of combinator applications will be called twice: once for

On Mapping 𝑁 -Dimensional Data-Parallelism Efficiently into GPU-Thread-Spaces IFL 21, September 01–03, 2021, Online

the computation of the grid and block variables, and one (inversely)
for the recomputation of the index vector.

in t ∗ p lu sone (in t ∗ a , / ∗ shape i n f o ∗ /) {
. . .
/ / pragma Gen
/ / Does no t g e n e r a t e any code , bu t l o a d s
/ / t h e c omp i l e r s t a t e t o :
l b 1 = s h ap e i n f o _ a _ l b 1 ;
l b 0 = s h ap e i n f o _ a _ l b 0 ;
ub1 = shape in fo_a_ub1 ;
ub0 = shape in fo_a_ub0 ;
/ / l b : [" l b 1 " , " l b 0 "]
/ / ub : [" ub1 " , " ub0 "]
/ / . . .

/ / pragma S h i f t L B
ub1 = ub1 − l b 1 ;
ub0 = ub0 − l b 0 ;
/ / l b : [" 0 " , " 0 "]
/ / ub : [" ub1 " , " ub0 "]

/ / pragma S p l i t L a s t
ub2 = ub0 / 3 2 ;
ub0 = 3 2 ;
/ / l b : [" 0 " , " 0 " , " 0 "]
/ / ub : [" ub1 " , " ub2 " , " ub0 "]

/ / pragma G r i dB l o c k
dim3 g r i d = dim3 (0 , ub1 , ub2) ;
dim3 b lo ck = dim3 (0 , 0 , ub0) ;

/ / S t a r t CUDA k e r n e l
. . .

}

in t ∗ p l u s one_k e rn e l (
ub1 , ub0 , lb1 , lb0 , . . .) {

/ / pragma G r i dB l o c k
i v 0 = b l o c k I d x . x ;
i v 1 = g r i d I d x . x ;
i v 2 = g r i d I d x . y ;
/ / l b : [" 0 " , " 0 " , " 0 "]
/ / ub : [" ub1 " , " ub2 " , " ub0 "]
/ / i v : [" i v 2 " , " i v 1 " , " i v 0 "]

/ / pragma S p l i t L a s t
i v 0 = i v 2 ∗ 32 + i v 0 ;
/ / l b : [" 0 " , " 0 "]
/ / ub : [" ub1 " , " ub0 "]
/ / i v : [" i v 1 " , " i v 0 "]

/ / pragma S h i f t L B

i v 1 = i v 1 + l b 1 ;
i v 0 = i v 0 + l b 0 ;
/ / l b : [" l b 1 " , " l b 0 "]
/ / ub : [" ub1 " , " ub0 "]
/ / i v : [" i v 1 " , " i v 0 "]

/ / pragma Gen
i v = [iv1 , i v 0] ;
. . .

}
Listing 10: Code generated for the with-loop in example 9

6.3 Non-destructive upper bounds
In the example in listing 10, all operations can be classified as
one of three operations: either replace variables with constants at
compiler level, create new variables at compiler and application
level, or modify variables at application level. For the upper bound,
however, this may not always be appropriate behavior. Let us take,
for example, following nested application of combinators:

#pragma gpukerne l Gr idB lock (1 ,
PadLas t (6 4 , S h i f t LB (Gen)))

In this case, in the application code, 𝑃𝑎𝑑𝐿𝑎𝑠𝑡 will need to increase
the upperbound to make it a multiple of 64 before the kernel launch,
and check each thread for whether it is inside the original index
space, or inside the extra padded space:

. . .
/ / B e f o r e k e r n e l l aunch
ub0 = ub0 + (6 4 − ub0 % 64) % 6 4 ;
. . .
/ / I n s i d e k e r n e l
i f (i v 0 >= ub0) return ;
. . .

This, however, does not work because of two reasons. First of
all, ub0 has been overwritten by the new and padded upper bound.
When the if-statement is executed, we need the upper bound after
the 𝑆ℎ𝑖 𝑓 𝑡𝐿𝐵, but before the 𝑃𝑎𝑑𝐿𝑎𝑠𝑡 has been executed. Secondly,
inside the kernel, we are in a completely new function. We won’t
have access to the variables in the host function, before the kernel
launch, anymore.

We can resolve the first problem by creating new variables every
time we update the upperbound. At compiler level, we can cache
the older variable names, so we can refer back to the upper bound
at any stage in the index space computation.

The second problem is a bit harder to fix. The optimal solution
would be to create an array of integers, and use this as the cache
described above. When we launch the kernel, we move the this
array to GPU memory and pass it to the kernel function. This way,
the kernel has the same information as the host function. However,
in the current state of the SaC compiler, it is difficult to pass this
extra argument to the kernel function.

Until we can add such a variable to pass it to the kernel function,
we recompute all steps of the upperbound inside each kernel func-
tion. This will create some extra overhead. However, this solution

IFL 21, September 01–03, 2021, Online Niek Janssen and Sven-Bodo Scholz

works well and is sufficiently efficient until we can change the
compiler.

7 DECIDINGWHICH COMBINATORS TO
EXECUTE

Providing the index space transformations as a set of combinators
that can be applied allows the code generation choices to be ex-
ternalised from the code generation process. As outlined in the
previous section this is implemented through pragmas allowing
programmers to enforce index space transformations in any way
they see fit. At the same time the use of pragmas already suggests
that the overall intention is to make these choices optional. In case
no pragmas are present, we need to find ways to generate the prag-
mas we ultimately want to use. Many ways of inferring the pragmas
can be envisioned: these could be heuristics based inferences or
some form of auto-tuning, being it offline or online.

For the time being, we implement three different strategies for in-
ferring these pragmas in case they are absent from a given program:
Jing, JingExt, and FoldAll.

7.1 Jing
This strategy mimics the behaviour of the original back-end as
implemented by Jing Guo and described in Section ??. As can be
seen from Table ??, the combinators used here depend on the di-
mensionality of the index space. In detail we have:

1D 𝐺𝑟𝑖𝑑𝐵𝑙𝑜𝑐𝑘 (1, 𝑆𝑝𝑙𝑖𝑡𝐿𝑎𝑠𝑡 (32, 𝑆ℎ𝑖 𝑓 𝑡𝐿𝐵 (𝐺𝑒𝑛))),
i.e., split into blocks of 32 and generate a 1D grid of these
blocks.

2D 𝐺𝑟𝑖𝑑𝐵𝑙𝑜𝑐𝑘 (2, 𝑃𝑒𝑟𝑚𝑢𝑡𝑒 ([0,2,1,3], 𝑆𝑝𝑙𝑖𝑡𝐿𝑎𝑠𝑡 (32,
𝑃𝑒𝑟𝑚𝑢𝑡𝑒 ([1,2,0], 𝑆𝑝𝑙𝑖𝑡𝐿𝑎𝑠𝑡 (32, 𝑆ℎ𝑖 𝑓 𝑡𝐿𝐵 (𝐺𝑒𝑛)))))),
i.e., split the innermost dimension by 32, then bring the out-
ermost dimension to the back; split that dimension by 32 as
well, then swap the two dimensions in the middle so that we
end up with two inner dimensions of 32 on the right hand
side. Finally 𝐺𝑟𝑖𝑑𝐵𝑙𝑜𝑐𝑘 turns the inner dimensions into 2D
blocks of size 32𝑥32, while the outer two dimensions serve
as a 2D grid.

3D, 4D, 5D 𝐺𝑟𝑖𝑑𝐵𝑙𝑜𝑐𝑘 (2, 𝑆ℎ𝑖 𝑓 𝑡𝐿𝐵 (𝐺𝑒𝑛)), i.e., all these
are taking the innermost two dimensions as block sizes and
the outermost dimensions for the grid.

Once the index space is higher-dimensional than 5, the code is not
executed on the GPU anymore. Notice here as well that no grid
compression is ever done.

7.2 JingExt
This strategy is almost identical to the previous one. The key differ-
ence is that this method is able to handle more then 5 dimensions.
There are still no safeguards against the lenghts of dimensions not
fitting inside the GPU limitations. JingExt is a recursive strategy,
defined by the following two rules:

• If the dimensionality is at most 5, we perform Jing’s method
• If the dimensionality is more then 5, we fold all pairs of
neighbouring dimensions together using a combination of

𝑃𝑒𝑟𝑚𝑢𝑡𝑒 and 𝐹𝑜𝑙𝑑𝐿𝑎𝑠𝑡2 mappings. If the number of dimen-
sions is uneven, we leave the innermost dimension intact.
After this, we perform JingExt again.

The goal of this method is to allow the usage of Jing’s method
in more cases. While this method is not entirely safe to use in all
cases, it uses a minimal amount of combinators to map onto the
GPU.

7.3 FoldAll
This method is a brute force method intended to deal with all cases
even reasonably well, assuming that no shape information is stati-
cally available. This method starts, as the name suggests, by folding
all dimensions together into one. After that, this dimension is split
again, using a predetermined pattern. This pattern is dependent on
the specific GPU device and the estimated size of the array. The
current size estimation is very crude, and uses the dimensionality
as an estimate. Once better size estimations are available, they can
be used to determine an optimal pattern to split the dimension.

8 RELATEDWORK
Here we will look at other projects focusing on generating GPU
code. We will quickly discuss their focus, and their strategies for
mapping arrays or vectors onto the GPU.

Futhark [10] is a functional language, specialized on multicore
execution. They mainly use OpenCL as a backend, but they recently
start CUDA as well [5]. The focus of their project lies on moderate
flattening, which means they flatten nested maps/loops, while re-
straining themselves to parallelism that is cheap to access. Code
that cannot efficiently be parallelized, is turned into fast sequential
code.

Our understanding of the Futhark project is that they do not
try to retain the shape of the original computations. They use the
thread blocks only to spawn threads in warps, and use only the
grid x dimension to spawn their threads.

One feat they do exploit is size inference. With the help of size
inference, they can get an estimate of the order of size of a certain
array/computation. They use this in their compiler to determine
where moderate flattening should be applied. In the case of SaC, it
may be interesting see if we could use these methods to improve
our pragma generation algorithms.

Lift/SkelCL [16] is an extension of the Scala language [4], com-
monly used in big data computations. They use OpenCL as their
backend. They provide a set of skeleton functions like map, zip
and reduce as higher level functions, which the programmer can
use in code they want to be executed on the GPU. Furthermore,
they provide a set of rewrite rules to obtain a faster execution time.
These rewrite rules may, for example, combine two kernels into
one.

Lift/SkelCL operates on two data types: vector and matrix. This
means they only support one and two dimensional arrays. This
means that they do not face the same challenges as SAC does when
trying to map multi-dimensional index spaces onto a GPU. Our
understanding is that they use a similar approach to futhark, only
spawning blocks of exactly the warp size, and then using the grid
to specify the problem space.

On Mapping 𝑁 -Dimensional Data-Parallelism Efficiently into GPU-Thread-Spaces IFL 21, September 01–03, 2021, Online

Accellerate [6] is an extension of the Haskell language [2].
They use CUDA for their backend. Like SaC, they support multi-
dimensional arrays. Accellerate distincts itself by generating the
CUDA kernels at runtime, instead of at compile time. This means
that it can optimize the implementation for the current specific
hardware. They generate these kernels using skeleton functions,
which get instantiated with the correct parameters whenever they
are needed. These instantiations are cached, so when a part of
CUDA code has to be run again with different data, they can re-
use the previously generated kernel. In SAC, optimizing kernels at
runtime would be beneficial as well, as we can then optimize the
kernel for a certain shape. However, this would prevent us from
kernel-reusing, unless the shapes of the consequent input arrays
are very similar. To our knowledge, Accellerate does also not make
use of the thread and block y and z variables.

9 CONCLUSIONS
This paper offers a small set of combinators for transforming n-
dimensional index spaces. Their design is tailored to satisfy the
needs when mapping n-dimensional rectangular grids into dense
index spaces suitable for thread creation on GPUs. We define the
transformations, explain how to regain the original indices, and we
show how we implemented them in the context of the current SaC
compiler. We also demonstrate how the heuristics-based implemen-
tation that pre-existed can be modelled using our combinators.

The implementation of the combinators as pragmas rather than
a fixed series of transformation that is hardwired to the compiler
allows for a high-level manipulations of the code generation process
similar to the strategies in Halide [13] or what Elevator offers for
Rise [12].

We also introduce a simple strategy for inferring suitable map-
pings for any given SaC source code. Further work could look into
inferences based on some target hardware specific cost models or
even dynamic auto-tuning approaches.

REFERENCES
[1] URL https://developer.nvidia.com/accelerated-computing-training.
[2] URL https://www.haskell.org/.
[3] URL https://www.sac-home.org/.
[4] URL https://www.scala-lang.org.
[5] J. S. Bertelsen. Implementing a cuda backend for futhark. 2019.
[6] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover. Accelerating

haskell array codes with multicore gpus. In Proceedings of the Sixth Workshop on
Declarative Aspects of Multicore Programming, DAMP ’11, page 3–14, New York,
NY, USA, 2011. Association for Computing Machinery. ISBN 9781450304863. doi:
10.1145/1926354.1926358. URL https://doi.org/10.1145/1926354.1926358.

[7] C. Grelck. Sharedmemorymultiprocessor support for functional array processing
in sac. Journal of Functional Programming, 15(3):353–401, 2005. doi: 10.1017/
S0956796805005538. URL smmsffapis.pdf.

[8] C. Grelck, D. Kreye, and S.-B. Scholz. On code generation formulti-generator with-
loops in sac. In P. Koopman and C. Clack, editors, Implementation of Functional
Languages, 11th InternationalWorkshop (IFL’99), Lochem, The Netherlands, Selected
Papers, volume 1868 of Lecture Notes in Computer Science, pages 77–94. Springer,
2000. doi: 10.1007/10722298_5. URL sac2c-codegen-WL-lochem-99.pdf.

[9] J. Guo, J. Thiyagalingam, and S.-B. Scholz. Breaking the gpu programming barrier
with the auto-parallelising sac compiler. In Proceedings of the sixth workshop on
Declarative aspects of multicore programming, pages 15–24, 2011.

[10] T. Henriksen. Design and Implementation of the Futhark Programming Language.
PhD thesis, Department of Computer Science, Faculty of Science, University of
Copenhagen, 2017.

[11] S. Herhut, S.-B. Scholz, and C. Grelck. Controllling chaos — on safe side-effects
in data-parallel operations. In M. Chakravarty and L. Peterson, editors, 4th
Workshop on Declarative Aspects of Multicore Programming (DAMP’09), Savannah,

USA, pages 59–67. ACM Press, 2009. ISBN 978-1-60558-417-1. doi: 10.1145/
1481839.1481847. URL 2009_5.pdf.

[12] T. Koehler and M. Steuwer. Towards a domain-extensible compiler: Optimizing
an image processing pipeline on mobile cpus. In 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 27–38, 2021. doi:
10.1109/CGO51591.2021.9370337.

[13] J. Ragan-Kelley, A. Adams, D. Sharlet, C. Barnes, S. Paris, M. Levoy, S. Ama-
rasinghe, and F. Durand. Halide: Decoupling algorithms from schedules for
high-performance image processing. Commun. ACM, 61(1):106–115, Dec. 2017.
ISSN 0001-0782. doi: 10.1145/3150211. URL https://doi.org/10.1145/3150211.

[14] S.-B. Scholz. Single assignment c — efficient support for high-level array opera-
tions in a functional setting. Journal of Functional Programming, 13(6):1005–1059,
2003. doi: 10.1.1.138.6995. URL SACESFHLAOIAFS.pdf.

[15] S.-B. Scholz. Single assignment c: Efficient support for high-level array oper-
ations in a functional setting. J. Funct. Program., 13(6):1005–1059, Nov. 2003.
ISSN 0956-7968. doi: 10.1017/S0956796802004458. URL https://doi.org/10.1017/
S0956796802004458.

[16] M. Steuwer. Improving programmability and performance portability on many-
core processors. PhD thesis, University of Münster, 2015. URL https://www.lift-
project.org/publications/2015/steuwer15phdthesis.pdf.

https://developer.nvidia.com/accelerated-computing-training
https://www.haskell.org/
https://www.sac-home.org/
https://www.scala-lang.org
https://doi.org/10.1145/1926354.1926358
smmsffapis.pdf
sac2c-codegen-WL-lochem-99.pdf
2009_5.pdf
https://doi.org/10.1145/3150211
SACESFHLAOIAFS.pdf
https://doi.org/10.1017/S0956796802004458
https://doi.org/10.1017/S0956796802004458
https://www.lift-project.org/publications/2015/steuwer15phdthesis.pdf
https://www.lift-project.org/publications/2015/steuwer15phdthesis.pdf

	Abstract
	1 Introduction
	2 SaC
	2.1 The with-loop
	2.2 With-loop execution
	2.3 CUDA and SaC

	3 Limitations on CUDA and how to solve them
	3.1 Proposed solution

	4 Index Space Transformations
	4.1 ShiftLB
	4.2 CompressGrid
	4.3 FoldLast2
	4.4 SplitLast
	4.5 PadLast
	4.6 Permute

	5 The SaC compiler
	5.1 CUDA kernel creation
	5.2 Grid and block
	5.3 Index recovery

	6 Combinator implementations
	6.1 Gen and GridBlock
	6.2 Generated code
	6.3 Non-destructive upper bounds

	7 Deciding which combinators to execute
	7.1 Jing
	7.2 JingExt
	7.3 FoldAll

	8 Related Work
	9 Conclusions
	References

