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Abstract
Probabilistic programming languages (PPLs) allow one to construct
statistical models to describe certain problem domains, and then
simulate data or perform inference over them [9]. In many PPLs,
models lack reusability as they are forced to be defined for a specific
use-case: simulation or inference. In other PPLs, models lack the
ability to be combined or composed.

This paper presents a DSL in Haskell for modularly defining prob-
abilistic models which are combinable and composable, and can be
reused for both simulation and inference. We then demonstrate how
simulation and inference can be expressed naturally as composable
program transformations using algebraic effect handlers.

1 Introduction
1.1 An Outline of Probabilistic Programming
By integrating notions of statistics with general purpose program-
ming languages, PPLs allow one to capture real world phenomena
through the construction of a program as a probabilistic model.
What distinguishes a probabilistic language from a general purpose
one is the ability to perform two computational effects: to sample,
which is to draw and return a random variable from a probabil-
ity distribution, and to observe, which is to condition against the
probability of a distribution giving rise to an observed value and
then return the observed value itself. Given these two probabilistic
constructs, one then expects to be able to:

(1) Specify a model in terms of mathematical relationships between
random variables in a program.

(2) Simulate data from a model, given a set of model parameters.
(3) Infer the parameters of a model, given some observed data to

condition against.

1.2 Motivation: Query-Based & Model-Based Languages
To make the workflow of using probabilistic languages as conve-
nient as possible, there are two significant challenges to engage
with. To introduce these, we first elaborate on how PPLs can be cat-
egorized into query-based languages and model-based languages.

• Query-based languages (Anglican [27], WebPPL [8], Monad-
Bayes [23]) work via the user writing a probabilistic query as a
normal function but with the freedom to explicitly call sample and
observe as effectful computations. This approach benefits from being
flexible and general purpose –we can directly express a probabilistic
computation for a given problem. Moreover, queries being more-
or-less functions means that they can be easily combined (they can
call other queries) and sometimes even functionally composed.

However, the explicit use of sample and observemeans that query-
based PPLs can only express “instances” of models which are spe-
cific to how they will used – either for simulation or inference. One

can see how this soon becomes frustrating when considering the
following example program in Anglican:

(defquery linearRegression [mu c sigma data_y x]
( let [y (sample (normal (mu ∗ x + c) sigma))]

{: y y }))

Figure 1: Linear Regression (Simulation) in Anglican

(defquery linearRegression [data_y x]
( let [mu (sample (normal 0 3))

c (sample (normal 0 2))
sigma (sample (uniform 1 3))
y (observe (normal (mu ∗ x + c) sigma) data_y)]
{: mu mu :c c : sigma sigma :y y }))

Figure 2: Linear Regression (Inference) in Anglican

Figure 1 depicts a linear regression model which is suitable for sim-
ulation, whereas Figure 2 defines the same model but for inference
instead. This leads to having to redefine the same model for each
possible interpretation. It hence becomes tedious to iterate through
and evolve models whilst maintaining each model interpretation.

• Model-based languages (Turing.jl [6], Gen.jl [5], PyMC3 [20],
Stan [3]) instead allow the user to construct models as a description
of relationships between random variables, where the semantics
of sampling and observing are not tied to the model syntax. For
example, consider the following program in Turing.jl:

@model function linearRegression(mu, c, sigma, x , y)
mu ~ Normal(0, 3)
c ~ Normal(0, 2)
sigma ~ Uniform(1, 3)
y ~ Normal(mu ∗ x + c , sigma)

end
Figure 3: Linear Regression in Turing.jl

Figure 3 shows how one would generally expect linear regression
to be written in a model-based language. Importantly, this allows
us to independently specify and develop models whilst being able
to simulate and infer on the same model definition.

A considerable limitation of existing model-based languages is
that it is either impossible to combine models or the means of doing
so is awkward, and it is impossible to compose models. This often
stems from it being difficult to design models as first class citizens,
resulting in them having to be monolithically defined and unable
to be manipulated by constructs such as higher-order functions
and functional combinators. Moreover, this makes modular debug-
ging difficult if we are unable to isolate and identify the defective
components of a model.

The drawbacks of query-based and model-based languages can
be re-expressed as the two following challenges:
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(1) How difficult it is to specify and iterate through different models.
It is common to want to quickly experiment with many model
definitions before considering how they will be used, if at all.

(2) How difficult it is to combine and compose different models.
This is essential for modular development of hierarchical models,
where compound models are constructed from independently
defined sub-models.

Effectively achieving both of these properties is something that is
left to be desired amongst current PPLs.

1.3 Contributions
We address the previous issues by presenting an embeddeding of a
model-based PPL for implementing modular, composable models.
The design relies on algebraic effects and extensible data, where
we demonstrate the implementation in Haskell. In particular:

• We achieve the first “model-based”, universal PPL in a functional
paradigm – models can be assigned multiple different interpre-
tations for both simulation and inference by letting them exist
independently of how they will be used and the observed data
they condition against. By using freer monads [12] and a distri-
bution data type, our language unifies the syntax for sampling
and observing, enabling models to be syntactically constructed
as descriptions of generative processes.

• We manage to capture probabilistic models as first-class objects
for the first time in amodel-based language; they can be combined
monadically and composed with higher-order functions such as
kleisli composition, fold, map, etc.

• We implement a mechanism for cleanly associating observed data
to the distributions within our model in order to specify which
probabilistic calls should be interpreted as sample or observe. This
is accomplished using extensible records [15] and affine effects;
importantly, this maintains the generality of a model description
and does not confine it to any specific semantics.

• We demonstrate how simulation and inference algorithms can
be expressed modularly using effect handlers [19] to perform
composable program transformations on models. This effectively
describes simulation and inference as higher-order functions
which take models and embed them into the semantics of a spe-
cific algorithm, creating a separation of concerns between models
and how they are used.

1.4 Structure of the Paper
We start by identifying the core components and needs of our ideal
probabilistic language and then discuss a corresponding optimal
embedding strategy; this will allow us to syntactically construct
simple models (§ 2). We then review the limitations of our language
which arise when considering models with recursive or iterative
structure; revising our implementation permits more sophisticated
models which can be used generically with higher-order functions
(§ 3). Next, we begin to assign basic semantics to models by defining
an set of initial effect handlers; these let us reconstruct models into a
formwhich is ripe for simulation or inference (§ 4). Finally, we show
how simulation and inference can be implemented as composable
program transformations by defining a set of algorithm-specific
effect handlers (§ 5).

2 Capturing Probabilistic Models As Syntax
In this section, we develop a DSL for syntactically constructing
probabilistic models. We initially discuss the needs of our language
and decide on a suitable embedding approach based around alge-
braic effects (§ 2.1). We then define the key effects of our language:
distributions (§ 2.2) and observable variable environments (§ 2.3).
Lastly, we detail the mechanism behind how distribution operations
are used to construct models (§ 2.4); this allows us to write simple
probabilistic models, such as linear regression (§ 2.5).

2.1 Embedding Strategies
First, we discuss how best to embed a language for probabilistic
models such that their semantic interpretation is delayed until
simulation or inference is called. There are numerous strategies
that can be regarded such as deep embeddings [25] and tagless-final
shallow [10] but we consider these as excessive for our purposes,
and moreover, they are fundamentally limited by their restricted
access to host language constructs.

Ideally we should only need to define the minimal constructs
necessary for our language which demand their own unique treat-
ment in a probabilistic domain, namely distributions. Algebraic
effects [18] are an excellent tool for this purpose which provide a
natural separation between their syntax (as an interface of effectful
operations) and semantics (as effect handlers).

2.1.1 Free Monads are a straightforward and general way of in-
ducing an algebraic effect system [26], defined as Free f a:

data Free f a = Pure a | Free ( f (Free f a ))

They allow us to construct a syntactic tree where its leaves, Pure,
represent pure values of type a, and its nodes, Free, are operations
shaped by some “effect” functor f. One could imagine introducing
distributions as a functorial GADT, Dist, for f:

data Dist a where
NormalDist :: Double −> Double −> (Double −> a) −> Dist a
deriving Functor

type Model a = Free Dist a

The syntax of a probabilistic program would then be constructed as
the free monad tree with nodes shaped by distributions. This idea
is incomplete however: probabilistic programs naturally require IO
effects for sampling random values.

2.1.2 Free Monad Transformers One solution would be to use free
monad transformers, FreeT f m a, which enable us to interleave
monadic effects of a given monad m throughout a free monad tree:

data FreeF f a x = Pure a | FreeF ( f x)
newtype FreeT f m a =
FreeT { runFreeT :: m (FreeF f a (FreeT f m a)) }

type Model a = FreeT Dist IO a

Of course, there are many more effects which one may need to
introduce into a program, which can be necessary for either infer-
ence or the model itself. Obvious examples include the State effect
for retaining trace information of the model’s execution, and the
List effect to represent populations of samples from the model. To
include all of these as a nesting of monad transformers for m in
FreeT f m a would be an unpleasant solution.



2.1.3 Freer Monads The solution we settle on, described by Kise-
lyov and Ishii [12], uses open sums to represent a coproduct of
multiple effects:

data OpenSum (ts :: [∗ −> ∗]) x where
OpenSum :: Int −> t x −> OpenSum ts x

Open sums are containers of data whose type isn’t statically known,
i.e. is existentially quantified. Here, the type parameter ts does not
represent a single effect, but a type-level list of possible effects
in our program. The OpenSum constructor then takes an effectful
operation t x along with the integer corresponding to t’s position
in ts – this allows us to recover t’s concrete type.

Safely injecting and projecting an effect t into and out of an open
sum, OpenSum ts x, requires us to first determine the position of t in
ts . This is made possible by the type class FindElem, whose function
findElem returns the integer index:

newtype Idx t ts = Idx {unIdx :: Int }
class FindElem t ts where
findElem :: Idx t ts

The type class Member then specifies that if we can determine t’s
position in ts , then we can inject and project it. Injection, inj , takes
an operation tx and adds it to the open sum ts . Projection, prj ,
attempts to extract an operation tx from an open sum ts .

class (FindElem t ts ) =>
Member (t :: ∗ −> ∗) ( ts :: [∗ −> ∗]) where

inj :: t x −> OpenSum ts x
prj :: OpenSum ts x −> Maybe (t x)

To later handle and discharge effects from an open sum, we must
also be able to decompose a value of type OpenSum (t ': ts ) v into
either being the first effect t or some other effect in ts . This is
defined as the function decomp:

decomp :: OpenSum (t ': ts ) v −> Either (OpenSum ts v) (t v)

The actual effect system which uses open sums is known as the
freer monad, given below:

data Freer ts a where
Pure :: a −> Freer ts a
Free :: OpenSum ts x −> (x −> Freer ts a) −> Freer ts a

Each Free constructor in our tree now contains an argument of type
OpenSum ts x, allowing individual nodes to be shaped by any of the
effects found in ts . The act of sending operations to a program
can be abstracted into the function send, which is equivalent to
extending the tree at its leaves:

send :: Member t ts => t x −> Freer ts x
send tx = Free ( inj tx ) Pure

A detail to note about the Freer monad is that its Free construc-
tor now stores an “operation continuation”, (x −> Freer f a). This
means that data types t for effects no longer need to be functors
(as opposed to the free monad) and hence can be defined more
elegantly without their continuations. This feature allows primitive
distributions to be defined more naturally as GADTs which are
parameterised by the type of value they generate (as seen in § 2.2),
and is partially why we find Kiselyov and Ishii’s approach more
suitable than other similar alternatives [13, 32].

2.2 Distribution Types
The core effect which our language is comprised of is the distribu-
tion data type, Dist, where its constructors are various primitive
distributions. Of course, distributions cannot be concretely inter-
preted as any single effect – there are two operations which we
expect to be able to perform on them: sampling and observing. To
avoid explicitly using these operations in a model, we need the
syntax of distributions to somehow unify these two notions.

data Dist a where
NormalDist :: Double −> Double −> Maybe Double

−> Dist Double
BernoulliDist :: Double −> Maybe Bool −> Dist Bool
BinomialDist :: Int −> Double −> Maybe Int −> Dist Int

To solve this, each constructor of Dist first takes a number of dis-
tribution parameters followed by a value of type Maybe a where a
matches the type of value the distribution generates. This indicates
the presence of an observed value to condition against, deciding
whether we sample or observe.

We can now begin to express the type of models as the following:

newtype Model ts a
= Model { runModel :: Member Dist ts => Freer ts a }

This states that a Model is given by the Freer monad where Dist is a
known member in the list of effects ts .

2.3 Environments For Observable Variables
Whether the user provides observed data to a distribution or not
decides when sampling and observing occur. The mechanism for
how we allow observed data to be specified should ideally only
happen when the entire model is necessarily run. It is thus a flawed
idea to pass this data as explicit function arguments to a model,
as this detracts from the model existing independently from the
notions of simulation and inference.

2.3.1 Reading Observed Variables A simple yet effective solution
is to incorporate the Reader type in our list of Freer effects.

data Reader env a where
Ask :: Reader env env

ask :: (Member (Reader env) ts) => Freer ts env
ask = send Ask

Its type parameter env represents the environment containing all
observable variables in the model that may be conditioned against.
The smart constructor ask can then be used to inject an Ask opera-
tion into a Freer f env computation.

The Reader effect would indeed move the details about observed
data to the type-level, but using this approach on its own is prob-
lematic in that it would force each model to have its own fixed
environment. This is overly rigid and prohibits the ability to com-
bine and compose different models. A solution to this is to use open
products (i.e. extensible records [15]) as environments:

2.3.2 Extensible Environments Ideally, model environments should
be kept abstract and only require that the observed variables rele-
vant to the model must be specified. This can be achieved by using
open products (i.e. extensible records [15]) as environments:



data Assoc x v = x :> v
data Any where
Any :: a −> Any

data OpenProduct (xvs :: [Assoc Symbol k]) where
OpenProduct :: Vector Any −> OpenProduct xvs

An open product, OpenProduct xvs, contains a vector of existentially
quantified types. Their type parameter xvs represents our model
environment and is a type-level list of associations between observ-
able variable names x𝑖 (of kind Symbol) and values v𝑖 (of kind k);
this lets us to keep track of which types are stored in the vector
whilst also corresponding them to specific variable names.

To refer to the variables of a record, we require a mechanism for
passing types of kind Symbol. The phantom data type Var is defined
for this purpose, acting as a container for type-level strings.

data Var (x :: Symbol) where
Var :: KnownSymbol x => Var x

A well known method for creating values such as Var in an un-
cumbersome way, is to derive an instance of the IsLabel class using
GHC’s OverloadedLabels language extension.

instance (KnownSymbol x, x ~ x ') => IsLabel x (Var x ') where
fromLabel = Var

Var values may now be formed using the # syntax; for example, the
value #foo will have type Var "foo".

Constructing an open product can be done by iteratively insert-
ing new variable-value pairs into an initially empty open product,
OpenProduct nil. Insertion must ensure that the positions of its value
and types are aligned at the term-level and type-level; the function
insert hence adds the variable and value type to the head of the
type list xvs, and cons’s the value to the head of the internal vector:

insert :: Var x −> v −> OpenProduct xvs
−> OpenProduct (x ':> v ': xvs)

insert _ v (OpenProduct vs) = OpenProduct (cons (Any v) vs)

In order to look up a field in the open product, we require that
we must be able to find its variable name in xvs and determine the
type of its correspond value. The former is enforced by defining
an instance of the type class FindElem, which returns the index of a
variable in an open product. The latter is done by the type family
LookupType, which returns the type of the associated value.

instance FindElem x (( x ':> v) ': xvs) where
findElem = Idx 0

instance FindElem x xvs => FindElem x (xv ': xvs) where
findElem = Idx $ 1 + unIdx (findElem :: Idx x xvs)

type family LookupType x xvs where
LookupType x ((x ':> v) : xvs) = v
LookupType x ((x ' ':> v) : xvs) = LookupType x xvs

To express both of these more conveniently, the type class Lookup is
provided which states that we may lookup variable x with a value
of type v in list of associations xvs:

class (FindElem x xvs , LookupType x xvs ~ v) => Lookup xvs x v
instance (FindElem x xvs , LookupType x xvs ~ v) => Lookup xvs x v

Getting and setting fields can then be implemented in a safe fashion
using TypeApplications, where the syntax @v passes an explicit type
argument v to a polymorphic function.

getOP :: forall x xvs v . (Lookup xvs x v)
=> Var x −> OpenProduct xvs −> v

getOP _ (OpenProduct vs) =
unAny (V.unsafeIndex vs (unIdx $ findElem @x @xvs))
where
unAny (Any v) = unsafeCoerce v

setOP :: forall x xvs v . (Lookup xvs x v)
=> Var x −> v −> OpenProduct xvs −> OpenProduct xvs

setOP _ v (OpenProduct vs) =
OpenProduct (vs // [(unIdx (findElem @x @xvs), Any v)])

The definition of getOP says: if the variable x can be found in an
open product, then we can determine its position using findElem
and look it up. A similar logic applies to setting fields with setOP.

2.3.3 Reading Extensible Environments in Models An important
remark about how open products are used in the context of prob-
abilistic models, is that all observed variables must be associated
with values of type Maybe v. This structure can be abstracted away
into the type family AsMaybes which maps the Maybe type over a
list of associations.

type family AsMaybes (as :: [k]) = (bs :: [k]) | bs −> as where
AsMaybes ((x :> v) : xvs) = (( x :> Maybe v) : AsMaybes xvs)
AsMaybes '[] = '[]

We then introduce the type class Observable to be used as shorthand
instead of Lookup for looking up values with type Maybe v.

class Lookup (AsMaybes xvs) x (Maybe v) => Observable xvs x v
instance Lookup (AsMaybes xvs) x (Maybe v) => Observable xvs x v

With this, the definition for Model can finally be updated: we now
also include the Reader effect where its environment is an exten-
sible record containing observable variables. The environment is
specified as an extra type parameter to Model called env:

type MRecord xvs = OpenProduct (AsMaybes xvs)
newtype Model env ts a
= Model { runModel :: ( Member Dist ts

, Member (Reader (MRecord env)) ts)
=> Freer ts a }

What is pragmatic about this solution is that the environments of
models can remain abstract, and the specifics about any necessary
observable variables are elegantly isolated as type class constraints.
This permits different model implementations to be combined and
composed.

2.4 Distribution Operations
All models are ultimately made up of a sequence of calls to prim-
itive distributions. There are two possible ways one could call a
distribution, hence we define a smart constructor for each.

The first would be to pass the required distribution parameters
as well as an observed variable name – this could represent either
sampling or observing, based on whether a value exists for that
variable. We demonstrate this using the normal distribution:



normal :: forall env x ts . (Observable env x Double)
=> Double −> Double −> Var x −> Model env ts Double

normal mu sigma var = Model $ do
env :: MRecord env <− ask
let obs = getOP var env
send (NormalDist mu sigma obs)

The function normal takes amean,mu, and standard deviation, sigma,
as parameters, followed by an observed variable name x. We first
send an ask operation to retrieve the environment of observed data
and extract from it the value corresponding to the observed variable.
Finally, this is used to send an operation for the normal distribution.
Other primitive distributions are implemented similarly.

Realistically, only a subset of distribution calls would be ob-
served against, so requiring an observed variable to be given to
every distribution would be laborious. Hence, the second way to
call a distribution would be to pass only the required distribution
parameters and use Nothing for the observed value:

normal' :: Double −> Double −> Model env ts Double
normal' mu sigma = Model $ do
send (NormalDist mu sigma Nothing)

Semantically, this would be equivalent to always sampling.

2.5 Example: Linear Regression
The methodology described so far gives us a solid foundation on
which we can formulate basic models. The following example ex-
presses linear regression, i.e. a model that assumes a linear relation-
ship between input variables x and output variables y:

prior :: (Observables env '[ "mu", "c" , " std "] Double)
=> Model env ts (Double, Double, Double)

prior = do
mu <− normal 0 3 #mu
c <− normal 0 2 #c
std <− uniform 1 3 #std
return (mu, c , std )

linRegr :: (Observables env '[ "y" , "mu", "c" , " std "] Double)
=> Double −> Model env ts (Double, Double)

linRegr x = do
(mu, c , std ) <− prior
y <− normal (mu ∗ x + c) std #y
return (x , y)

The linear regression model, linRegr , takes x as input. It calls a sub-
model, prior , to generate the gradient mu and intercept c from a
normal distribution, and the noise around the line std from an uni-
form distribution. The output y is then computed from the normal
distribution using a mean mu ∗ x + c and standard deviation std.

The constraint “Observables” is short-hand for simultaneously
specifying multiple Observable variables which have the same type.
Here, we state that "y", "mu", "c", and " std " are Doubles that can be
observed against, and we associate them with their appropriate
distributions by using the OverloadedLabels hash syntax.

Our example program, although contrived, demonstrates our lan-
guage’s ability to combine different model definitions; this property
becomes more obviously desirable when dealing with sophisticated,

multi-level models. Moreover, our model is now ripe for both sim-
ulation and inference (assuming an effect handler for executing
models is in place). Simulation could be performed passing an empty
environment of observed values, allowing all random variables in
the model to be newly sampled each iteration. Alternatively, one
could simulate by providing an environment with a fixed gradient
mu and noise std – the data generated would then be characterized
by that line. Inference would work by passing a list of environments
containing an expected output "y", each of which corresponds to a
known input x. This would generate a trace of parameters mu and
std whose distribution expresses the most likely latent parameters
to give rise to the observed data.

3 Improving Our PPL Mechanism
Our current implementation provides a decent infrastructure for
writing elementary probabilistic models in. Attempting to express
more complex models, however, reveals that there are two funda-
mental mechanisms which we lack. In this section, we introduce
affine environments (§ 3.1) and addresses (§ 3.2) to yield the re-
vised, final definition of models (§ 3.3). This allows us to write more
complex, recursive models, which we demonstrate in § 3.4.

3.1 Affine Environments
The method of using Maybe types for observable values is very
straightforward, and initially, it seems sufficient for consolidating
the effects of sampling and observing. Its shortcomings soon be-
come clear when considering the two following problems which
can be considered different sides of the same coin:
(1) It is currently possible for the value of an observed variable to

be referenced and conditioned against multiple times in a model
which often results in the model becoming ill-defined. In most
situations, this would be considered as accidental behaviour
resulting from an oversight by the user. The actual intention of
the model hence becomes ambiguous.

(2) A probabilistic call can only be associated with a single observed
variable whose value remains the same throughout the course
of a model. Following on from the first problem, the fact that
we can recursively or iteratively observe becomes useless if we
are incapable of conditioning against different values. This is
massively detrimental to our ability to use models with higher-
order functions such as replicate , fold , and map.

To resolve this, we acknowledge two objectives.

3.1.1 List Environments The first objective is that an observed vari-
able must be able to correspond to multiple observed values, each
of which has a known position. We achieve this by first changing
our environment such that each observed variable is associated
with a value of type List a rather than Maybe a. Hence, we now
instead use following type family AsLists , which maps the List type
constructor over the values in an open product. We also redefine
the Observable type class to incorporate this:

type family AsLists (as :: [k]) = (bs :: [k]) | bs −> as where
AsLists (( x :> v) : xvs) = (( x :> [v]) : AsLists xvs)
AsLists '[] = '[]

class Lookup (AsLists xvs) x [v] => Observable xvs x v



instance Lookup (AsLists xvs) x [v] => Observable xvs x v

The empty list [] can be viewed as equivalent to Nothing and the
non-empty list (x : xs) as equivalent to Just x. Although there are
many data structures and forms of indexing values that one could
use, lists capture themost general treatment of environments for our
purpose: this is because probabilistic operations ultimately occur
sequentially, and importantly, the execution trace of observation
calls in a probabilistic program must transpire in a known order.

3.1.2 Affine Effects The second objective is that referencing an
observed variable must permanently consume one of its values –
this is analogous to affine types, where a resource can be used at
most once. Haskell does not support an affine type system, and it
would be excessive to require one. However, we can simulate affine
types as an effect by defining an “affine reader”:
data AffReader env a where
Ask :: Observable env x v => Var x −> AffReader env (Maybe v)

ask :: (Member (AffReader env) ts , Observable env x v)
=> Var x −> Freer ts (Maybe v)

ask var = Free ( inj $ Ask var) Pure

AffReader can be seen as a refinement of our previous generic Reader
type, and implicitly specifies that the environment must be an open
product where its values are lists. The Ask operation no longer
returns the entire environment, but instead takes a variable name
to look up its corresponding list value and return the head element if
it exists. This safely restricts which observed values can be accessed
at any one time. The actual discarding of consumed values (and
maintenance of the environment) in response to Ask operations
is entrusted to the AffReader effect handler (implemented in § 4.1)
which updates the environment with the tail of the list it accessed.

3.2 Addressing Probabilistic Operations
Probabilistic languages require unique addresses to be assigned
to each dynamic occurrence of a probabilistic operation – this is
mainly for the correctness and implementation of generic inference
algorithms [31], so that operations between different program exe-
cutions may be corresponded. A secondary benefit of addresses is
the ability to identify and extract specific random variables from
the execution trace.

Our addressing mechanism allows observed variable names to be
used as tags to distribution calls. We can easily extend the current
implementation to incorporate addresses by allowing distributions,
Dist, to take an extra argument of type Maybe Tag.
type Tag = String
data Dist a where
NormalDist :: Double −> Double −> Maybe Double

−> Maybe Tag −> Dist Double

Of course, tags only identify static occurrences of probabilistic
operations – each dynamic occurrence requires its own indexing,
and this is taken care of in the implementation of distribution effect
handlers (§ 4.2).

3.3 Models and Distribution Operations, Revised
With the introduction of the AffReader effect, we update the defini-
tion of Model to give its final form:

newtype Model env ts a
= Model { runModel :: ( Member Dist ts

, Member (AffReader env) ts )
=> Freer ts a }

This simply replaces the old effect, Reader (MRecord env), with the
type AffReader env so that models rely on an affine environments
of list values rather than immutable Maybe values.

We then redefine our smart constructors for primitive distribu-
tions to account for affine environments and addresses:

varToStr :: forall x . Var x −> String

normal :: forall env x ts . (Observable env x Double)
=> Double −> Double −> Var x −> Model env ts Double

normal mu sigma var = Model $ do
let tag = Just ( varToStr var)
obs <− ask var
send (NormalDist mu sigma obs tag)

normal' :: Double −> Double −> Model env ts Double
normal' mu sigma = Model $ do
send (NormalDist mu sigma Nothing Nothing)

The changes are minor. The function normal now converts the ob-
served variable name from a type-level string to the string value tag,
and the associated observed value obs is accessed directly from the
environment. When no observed variable is provided, the function
normal' simply sets its tag as Nothing.

3.4 Example: Hidden Markov Model
The addition of affine environments lets us define models with
recursive or iterative structure; they can now be used safely with
higher-order functions. An excellent example of this is a hidden
markov model (HMM) [1], illustrated in Figure 4.

Figure 4: Hidden Markov Model

The idea is that there are a series of latent states x𝑖 which are related
in some way to a series of observable states y𝑖 . The objective is to
learn about x given y. A HMM is defined by two sub-models:
(1) A transition model describes how the latent states x𝑖 are tran-

sitioned between:

transitionModel :: Double −> Int −> Model env ts Int
transitionModel transition_p x𝑖−1 = do
dX <− boolToInt <$> bernoulli ' transition_p
return (dX + x𝑖−1 )



Here, the variable dX is drawn from a Bernoulli distribution,
converted to an integer, and added to the previous latent state
to yield x𝑖 = x𝑖−1+ dX.

(2) An observation model projects a latent state x𝑖 to an observable
state y𝑖 :

observationModel :: (Observable env "y𝑖 " Int )
=> Double −> Int −> Model env ts Int

observationModel observation_p x𝑖 = do
binomial x𝑖 observation_p #y𝑖

This states that y𝑖 is related to x𝑖 via the Binomial distribution.
These sub-models can then be combined to define a HMM for a
single node:

hmm :: (Observable env "y𝑖 " Int )
=> Double −> Double −> Int −> Model env ts Int

hmm transition_p observation_p x𝑖−1 = do
x𝑖 <− transitionModel transition_p x𝑖−1
y𝑖 <− observationModel observation_p x𝑖
return x𝑖

Furthermore, this HMM can be functionally composed to create a
chain of nodes. We do this by creating a list of HMMs and folding
over them with kleisli composition (>=>).

hmmNSteps :: (Observable env "y𝑖 " Int )
=> Double −> Double −> Int −> ( Int −> Model env ts Int )

hmmNSteps transition_p observation_p n =
foldl (>=>) return ( replicate n (hmm transition_p observation_p ))

This program fully defines a HMM. By assigning a list of observed
data to the variable y𝑖 , the AffReader effect allows us to recursively
condition against each of the values in y𝑖 in chronological order.

Although this only captures a specific example, there are a
multitude of cases in which it is pragmatic to use models with
higher-order functions, e.g. conditioning a matrix against a one-
dimensional distribution (using replicateM), or mapping a model
against a list of different parameters (using mapM).

4 Inference: Basic Handlers
Perfoming simulation or inference can now be achieved by defining
appropriate effect handlers which assign semantics to the syntactic
operations of a model. Every model initially only consists of the
distribution effect, Dist, and the affine reader effect, AffReader env
(as defined in § 3.3). Both of these effects can actually be handled
in a universal way before even having to decide how a model will
be run and what specific algorithm will be used to run it.

In this section, we implement these handlers so that all observed
variable requests aremanaged (§ 4.1) and all distributions are concre-
tised as either sample and observe operations (§ 4.2). The resulting
composition of these handlers (§ 4.3) will reconstruct a probabilistic
program into a form which is ready to be interpreted by all kinds
of inference algorithms.

4.1 Handling AffReader
We start by defining the handler for the AffReader type; as mentioned
in § 3.1, this must ensure that observed values are permanently
consumed when read. This is given as runAffReader:

runAffReader :: forall env ts a . OpenProduct (AsLists env)
−> Freer (AffReader env ': ts ) a −> Freer ts a

runAffReader _ (Pure a) = return a
runAffReader env (Free u k) = case decomp u of
Right (Ask var) −> do
let ys = getOP var env

y = safeHead ys
env ' = setOP var ( safeTail ys) env

runAffReader env ' (k y)
Left u ' −> Free u ' (runAffReader env . k)

This function is run by providing an initial environment env con-
taining of a list of values for each observed variable. Upon receiving
an Ask request to read from an observed variable var, we acquire
the corresponding list ys. The environment is then updated with
the tail of the list, and the head element y (if it exists) is returned
as the observed value to the continuation k.

4.2 Handling Distributions
The purpose of the distribution handler is twofold: to map distribu-
tions to either sample or observe effects, and to provide a dynamic
address to each probabilistic operation. We introduce the type of
addresses below, as well as the effects of sampling and observing:
type Addr = (Tag, Int )
data Sample a where
Sample :: Dist a −> Addr −> Sample a

data Observe a where
Observe :: Dist a −> a −> Addr −> Observe a

An address, Addr, consists of a tag along with an integer repre-
senting its occurrence in the program. The type Sample takes a
distribution to sample from and an address. The type Observe takes
a distribution, an observed value, and an address.

The distribution handler, runDist, is then implemented indirectly
by calling the function loop:
runDist :: forall ts a . (Member Sample ts, Member Observe ts)

=> Freer (Dist : ts ) a −> Freer ts a
runDist = loop 0 Map.empty
where
loop :: (Member Sample ts, Member Observe ts)
=> Int −> Map Tag Int −> Freer (Dist : ts ) a −> Freer ts a

The function loop traverses and handles all the distribution calls
in the program. This also takes and maintains: a counter, used to
assign default tags to untagged distributions, and a tagMap, used to
track the number of dynamic occurrences of a tag in a model.

1 loop :: (Member Sample ts, Member Observe ts)
2 => Int −> Map Tag Int −> Freer (Dist : ts ) a −> Freer ts a
3 loop _ _ (Pure a) = return a
4 loop counter tagMap (Free u k) = case decomp u of
5 Right d −>
6 let tag = fromMaybe (show counter) (getTag d)
7 tagIdx = Map.findWithDefault 0 tag tagMap
8 tagMap' = Map.insert tag ( tagIdx + 1) tagMap
9 in case getObs d of

10 Just y −> do x <− send (Observe d y (tag , tagIdx ))
11 loop (counter + 1) tagMap' $ k x
12 Nothing −> do x <− send (Sample d (tag , tagIdx ))



13 loop (counter + 1) tagMap' $ k x
14 Left u ' −> Free u ' ( loop counter tagMap . k)

On encountering a distribution operation in Right d, we first deter-
mine its tag by extracting it from the distribution via getTag d – if
this is Nothing, we set it to the string-form of the counter (line 6).
The number of occurrences of this tag, tagIdx, is looked up from
the tagMap and set to 0 if it has not yet occurred (line 7); the tagMap
is then updated to increment the number of occurrences (line 8).
Finally, we attempt to retrieve the observed value using getObs d
(line 9). If this exists, then we inject an Observe operation into our
model, otherwise, a Sample operation is injected instead.

4.3 Composing Handlers: AffReader and Dist
For clarity, we give the type definition for the composition of these
two handlers below as the function runInit :
runInit :: (Member Observe ts, Member Sample ts)

=> OpenProduct (AsLists env)
−> Model env (Dist : AffReader env : ts ) a
−> Freer ts a

runInit env = runAffReader env . runDist . runModel

The result of running this on a model is a fully-addressed probabilis-
tic program where distributions have been replaced with concrete
Sample and Observe calls.

5 Inference As Effect Handler Composition
The general implementation of simulation and inference algorithms
in probabilistic programming can be boiled down to the semantics
that they assign to Sample and Observe operations. This concept co-
operates extremely naturally with algebraic effect handlers. Theoret-
ically, onewould only ever need to define two effect handlers for any
particular execution of the model: runSample and runObserve. This
idea is short-lived however, as we encounter algorithms which de-
mand further side-effects on top of sampling and observing. In this
section, we illustrate how the program transformation described
in § 4.3 can be taken and intelligently composed with a range of
other effect handlers, giving rise to simulation (§ 5.1) and inference
(§ 5.2) over models.

5.1 Simulation
Simulation can be considered the most basic form of model execu-
tion. It simply runs the model as a generative process to return its
output, using observed data when provided and otherwise drawing
new samples. This can be written rather easily:

For Observe requests, no conditioning side-effects are performed;
the handler runObserve simply needs to return the observed value y
to its continuation k:
runObserve :: Freer (Observe : ts ) a −> Freer ts a
runObserve (Pure a) = return a
runObserve (Free u k) = case decomp u of
Right (Observe d y addr) −> runObserve (k y)
Left u ' −> Free u ' (runObserve . k)

For Sample requests, the handler runSample returns a sampled value
x from the provided distribution d. In our implementation, the
function sample uses an external statistics library to accomplish
this:

sample :: Dist a −> IO a

runSample :: Freer '[ Sample] a −> IO a
runSample (Pure a) = return a
runSample (Free u k) = case prj u of

Just (Sample d addr) −> do x <− sample d
runSample (k x)

_ −> error " Impossible : Nothing can occur"

Running this dispatches the final effect in the Freer monad to pro-
duce an IO effect. Hence, runSample always needs to be executed as
the last effect handler where only Sample operations are allowed to
occur in the program.

We can now give the complete definition for simulation below:

runSimulate :: ( ts ~ '[ AffReader env, Dist , Observe, Sample])
=> OpenProduct (AsLists env) −> Model env ts a −> IO a

runSimulate env
= runSample . runObserve . runDist . runAffReader env . runModel

This implementation depicts how the logic of model execution can
be made transparent by decomposing it into a pleasingly modular
system. Moreover, this approach allows for fine-grained modifica-
tions and extensions which we discuss in § 5.2.

We demonstrate simulation using a Hidden Markov Model (sim-
ilar to § 3.4) to model the spread of disease during an epidemic
– this is known as an SIR model [30]. The observed states, RecInf,
represent the recorded amount of infected people. The latent states,
LatentSt, characterize three variables: the actual amount of suscep-
tible, infected, and recovered people:

type RecInf = Int
data LatentSt = LatentSt { sus :: Int , inf :: Int , recov :: Int }

The function hmmSIR defines our actual model. It takes as argu-
ments the number of time-steps and the initial latent state, and
produces a series of latent and observed states. How these states
change over time is determined by three parameters: 𝜌 , 𝛽 , and 𝛾 .

hmmSIR :: (Observables env '[ "𝜌 " , "𝛽 " , "𝛾 "] Double,
Observable env " recInf " Int )

=> Int −> LatentSt −> Model env ts ([ LatentSt ], [RecInf ])

To simulate from this, we first construct an environment of ob-
servable variables (using some pre-defined operators as syntactic
sugar): this fixes values to our parameters 𝜌 , 𝛽 , and 𝛾 , but assigns
no values to refInf as this is only used during inference. Next, we
set our initial latent state to a population of 763 people who are
all susceptible to disease. The entire model can then be handled by
calling runSimulate.

let env = (#𝜌 @= [0.3] <: #𝛽 @= [0.7] <: #𝛾 @= [0.009] <:
# recInf @= [] <: nil )

latentSt = LatentSt { sus = 763, inf = 0, recov = 0 }
in runSimulate env (hmmSIR 100 latentSt)

The output simulation from this program is visualized in Figure 5.



Figure 5: SIR Hidden Markov Model - Simulation

5.2 Inference
Approximative Bayesian inference attempts to learn the posterior
distribution of a model’s parameters given some observed data.
Unlike simulation which is straightforward, inference algorithms
require more complex mechanisms to keep track of information
such as sample traces, probability mappings, and model reparame-
terization – attempting to capture all of this inside just runSample
and runObservewould lead to a rather large and unwieldy implemen-
tation. It is also important to note that many inference algorithms
such as Monte-Carlo methods can be said to decompose into more
basic building blocks, and through modifying and combining these
components, different variants of algorithms may be constructed. It
is therefore crucial that our implementation can express this notion
well in a compositional manner.

Our approach uses effect handlers to perform a series of further
composable program transformations on the model; one can view
this as iteratively reconstructing a probabilistic program by mu-
tating existing effects into new ones. The result of this process is
a model embedded into the context of a specific inference algo-
rithm; we demonstrate this for Likelihood Weighting, and single
site Metropolis-Hastings [31].

5.2.1 Likelihood Weighting is a form of importance sampling [7]
which approximates the posterior distributionwith a set of weighted
samples. The idea is that whenever we draw a sample, this is equiv-
alent to generating a proposed model parameter from the prior
distribution. When provided observed data, we compute the log-
probability of these proposed parameters generating that data; the
sum of these log-probabilities represent the total log-likelihood.
Performing this over multiple iterations gives us a trace of sample
maps of proposed parameters and their likelihoods.

First, a data structure is required to record the sample map during
a model execution. We define this as SMap, a map from addresses
to sampled values:
type PrimVal = '[ Int , Double, Bool, String ]
type SMap = Map Addr (OpenSum' PrimVal)

This map needs to accommodate any value which can be produced
from a primitive distribution (given by PrimVal), however maps are

monomorphic in their value type. We hence use OpenSum' which is
a variant of OpenSum but instead contains types of kind (∗) .

To be able to update a sample map, we introduce the State ef-
fect with a single operation, Modify. The function updateSMap then
modifies the map by inserting a new address and value:

data State s a where
Modify :: (s −> s) −> State s ()

modify f = Free ( inj $ Modify f) Pure

updateSMap :: (Member (State SMap) ts, Member v PrimVal)
=> Addr −> v −> Freer ts ()

updateSMap addr v = modify (Map.insert addr ( inj v ))

The core idea is then to perform a program transformation to our
model to embed it in the context of Likelihood-Weighting. This
is defined as the function transformLW, where we can see from its
type signature that it does not discharge any effects in ts :

1 transformLW :: (Member (State SMap) ts, Member Sample ts)
2 => Freer ts a −> Freer ts a
3 transformLW (Pure a) = return a
4 transformLW (Free u k) = case prj u of
5 Just (Sample d addr) −> case d of
6 DistInt ( Just d) −>
7 Free u (\ x −> do updateSMap addr (unsafeCoerce x :: Int )
8 transformLW (k x))
9 DistBool ( Just d) −>

10 Free u (\ x −> do updateSMap addr (unsafeCoerce x :: Bool)
11 transformLW (k x))
12 ...
13 _ −> Free u (transformLW . k)

For every Sample operation, this injects a State SMap effect that
stores the sampled value into our map (lines 7 & 10). Note that
because the type of the sampled value x passed to the continuation
is existentially quantified, we need to pattern match on the sampled
distribution in order to correctly determine its concrete type. Here
we use pattern synonyms such as DistInt and DistBool to cover all
primitive distributions which generate those types; this allows us
to safely coerce x and insert it into our map.

Now all that is left is to define handlers for Observe and Sample
(we omit the implementation of runState). The handler runSample is
implemented in the same way as for simulation (§ 5.1). However,
runObserve now needs to accumulate and sum all the log probabili-
ties of the observed values provided:

logProb :: Dist a −> a −> Double

runObserve :: Member Sample rs
=> Freer (Observe : rs ) a −> Freer rs (a , Double)

runObserve = loop 0
where
loop p (Pure a) = return (a , p)
loop p (Free u k) = case decomp u of

Right (Observe d y _) −> let p ' = logProb d y
in loop (p + p ') (k y)

Left u ' −> Free u ' ( loop p . k)

The complete definition of Likelihood Weighting is shown below:



1 runLW :: ts ~ '[ AffReader env, Dist , State SMap, Observe, Sample]
2 => OpenProduct (AsLists env) −> Model env ts a
3 −> IO (( a , SMap), Double)
4 runLW env = runSample . runObserve
5 . runState Map.empty . transformLW
6 . runDist . runAffReader env . runModel

This function resembles that of runSimulate, except we also insert a
handler composition on line 5 which embeds and handles an effect
for recording sample maps. Running this on a model will yield the
model’s output, its sampled values, and the log likelihood of its
sampled values giving rise to the observed data env.

We demonstrate Likelihood-Weighting on our previous linear
regression model in § 2.5:

linRegr :: (Observables env [ "y" , "mu", "c" , " std "] Double)
=> Double −> Model env ts (Double, Double)

let mkEnvY yv = (#y @= yv) <: (#mu @= []) <:
(#c @= []) <: (#std @= []) <: nil

xs = [0 .. 100]
ys = map mkEnvY (map ( ∗ 3) [0 .. 100])

in lw linRegr xs ys

First we define a list of model inputs 𝑥𝑠 and their corresponding
observed values 𝑦𝑠 such that they are related by 𝑦 = 3 ∗𝑥 . Inference
is then performed by calling a top-level function lwwhich performs
multiple iterations of runLW for different model inputs and envi-
ronments. This produces a trace of weighted samples; in Figure 6,
we visualise the likelihoods of different samples for parameter mu,
where values aroundmu = 3 clearly accumulate higher probabilities.

Figure 6: Linear Regression - Likelihood Weighting (mu)

Likelihood Weighting, however, loses effectiveness as the number
of random variables we sample from grows. This is because every
iteration, it works by freshly generating new samples for all Sample
operations. Achieving a sample map with a high likelihood is de-
pendent on being fortunate enough to sample an entire set of good
values, and it becomes ambiguous as to which variables have con-
tributed more. An alternative importance sampling method which
offers a solution is Metropolis-Hastings.

5.2.2 Metropolis-Hastings (MH) keeps track of both a sample map
and a log probability map. For each MH iteration, the idea is to

first randomly pick a single proposal site 𝛼 . When sampling, we
only draw a new value if the address matches 𝛼 , otherwise, we
reuse the value from the previous iteration’s sample map whenever
possible; this allows us to incrementally propose new parameters.
When both sampling and observing, we always compute their log-
probabilities – these are used at the end of anMH iteration to decide
whether to accept the proposed parameter. Performing this over
multiple iterations produces a trace of sample maps representing
the posterior distribution over the model’s parameters.

We first define a new data structure LPMap to record the log-
probabilities during model execution, and a function updateLPMap
to update this map using the State effect:

type LPMap = Map Addr Double
updateLPMap :: Member (State LPMap) ts

=> Addr −> Dist a −> a −> Freer ts ()
updateLPMap addr d x = modify (Map.insert addr (logProb d x ))

A model can then be transformed into the context of Metropolis-
Hastings, given by transformMH:

1 transformMH :: (Member (State SMap) ts, Member (State LPMap) ts
2 , Member Sample ts, Member Observe ts)
3 => Freer ts a −> Freer ts a
4 transformMH (Pure a) = return a
5 transformMH (Free u k) = case prj u of
6 Just (Sample d addr) −> case d of
7 DistInt ( Just d) −>
8 Free u (\ x −> do updateSMap addr (unsafeCoerce x :: Int )
9 updateLPMap addr (unsafeCoerce x :: Int )

10 transformLW (k x))
11 ...
12 Just (Observe d y addr) −>
13 Free u (\ x −> do updateLPMap addr y
14 transformMH (k x))
15 _ −> Free u (transformMH . k)

We inject State effects to 1) store any values generated from Sample
operations (line 8), and 2) compute and store the log probabilities
for both Sample and Observe operations (lines 9 & 13).

All we need to do now is define how Observe and Sample are
interpreted. As all conditioning is taken care of by the State LPMap
effect, the runObserve handler simply needs to return its observed
value y – hence its implementation is the same as for simulation
(§ 5.1). The runSample handler, however, needs to be implemented
such that it reuses old samples whenever it can:

lookupSample :: SMap −> Dist a −> Addr −> Addr −> Maybe a

runSample :: Addr −> SMap −> Freer '[Sample] a −> IO a
runSample 𝛼 sMap = loop
where
loop (Pure a) = return a
loop (Free u k) = case prj u of
Just (Sample d addr) −> case d of

DistInt ( Just d) −> do
x <− fromMaybe <$> sample d

<∗> lookupSample sMap d addr 𝛼
( loop . k . unsafeCoerce) x

...



It now uses the function lookupSample: this returns Nothing if the
current address matches the proposal site 𝛼 or if it is not found in
the previous sample map – in this case, we generate a new sample.

We can now give the complete definition of the Metropolis-
Hastings handler as runMH:

1 runMH :: ts ~ '[ AffReader env, Dist , State SMap, State LPMap
2 , Observe, Sample ]
3 => OpenProduct (AsLists env) −> SMap −> Addr
4 −> Model env ts a −> IO (( a , SMap), LPMap)
5 runMH env sMap 𝛼 = do
6 runSample 𝛼 sMap . runObserve
7 . runState Map.empty . runState Map.empty . transformMH
8 . runDist . runAffReader env . runModel

In addition to the environment, env, this takes two extra arguments:
the previous iteration’s sample map, sMap, and the current proposal
site 𝛼 . The handler composition on line 7 embeds and handles the
effects for recording sample and log-probability maps which are
later returned in the final output.

This can then be used to implement a single iteration of the
Metropolis-Hastings algorithm, mhStep:

1 type MHTrace a = [(a , SMap, LPMap)]
2 mhStep :: ts ~ '[ AffReader env, Dist , State SMap, State LPMap
3 , Observe, Sample ]
4 => OpenProduct (AsLists env) −> Model env ts a
5 −> MHTrace a −> IO (MHTrace a)
6 mhStep env model trace = do
7 let (x , sMap, lpMap) = head trace
8 𝛼𝑖𝑑𝑥 <− discrUniform 0 (Map.size sMap − 1)
9 let 𝛼 = fst $ Map.elemAt 𝛼𝑖𝑑𝑥 sMap

10 (( x ', sMap '), lpMap') <− runMH env sMap 𝛼 model
11 let accept_ratio = accept 𝛼 sMap sMap' lpMap lpMap'
12 u <− uniform 0 1
13 if accept_ratio > u
14 then return ((x ', sMap', lpMap '): trace )
15 else return trace

This first extracts the previous iteration’s sample and log-probability
maps from the head of the accumulated trace (line 7). Then, we
uniformly choose a proposal site 𝛼 from the existing sample ad-
dresses (lines 8 - 9). These are used to execute the model using the
runMH handler, which returns a new sample and log probability
map (line 10). To decide whether these should be added to the trace,
we compute an acceptance ratio by comparing them with the pre-
vious maps (line 11); if this ratio is larger than 𝑢 ∼ uniform(0, 1),
then we accept (lines 12 - 15).

We demonstrate Metropolis-Hastings on a topic model (also
known as Latent Dirichlet Allocation), whose aim is to group similar
word patterns to identify topics in a set of text documents. Each
document has its own topic distribution, expressing how much a
certain topic occurs in that document. Each topic distribution then
has its own word distribution which specifies how likely certain
words are to occur under that topic. This is visualised in Figure 7.

Figure 7: LDA

This diagram highlights well why the ability to express hierarchical
models in a modular way is desirable; below, we give a simple
outline of how the implementation looks in our language:

topicWordDist :: Observable env "𝑤 " String
=> [ String ] −> [Double] −> Model env ts String

docTopicDist :: Observable "\ " [Double]
=> Int −> Model env ts [Double]

docModel :: (Observables env [ "𝜙 " , "\ "] [Double],
Observable env "𝑤 " String )

=> Int −> [String ] −> Model ts env [ String ]

To perform Metropolis-Hastings on this, we first define the vari-
able doc as the document of words we are conditioning against;
for simplicity, we use a list of strings containing only "DNA" and
" evolution ". We then state the full potential vocabulary of a docu-
ment, and declare that there are two possible topics. Lastly, we call
a top-level function mh on our model, which essentially executes
mhStep for 100 iterations.

let mkRecTopic words = (#𝜙 @= []) <: (#\ @= [])
<: (#𝑤 @= words) <: nil

doc = mkRecTopic ["DNA", "evolution" , "DNA", "evolution"]
vocab = [ "DNA", "evolution" , "parsing" , "phonology"]
num_topics = 2

in mh 100 (docModel num_topics) [vocabulary] [doc]

This returns us a trace of samples representing the posterior dis-
tribution over the model parameters. By randomly selecting a set
of parameters from the trace, we can then visualize the predictive
distribution of our model in Figure 8. This expresses howwe believe
topics and words are distributed over the document.

6 Related Work
Here we discuss relevant work with respect to our contributions,
making observations about novelty and alternative approaches.

1. Our work achieves a model-based PPL for syntactically con-
structing a general-purpose probabilistic model from which multi-
ple interpretations can be given rise to. Our embedding technique
consists mainly of freer monads and a distribution effect.

Ścibior et al. also take approaches which can be considered simi-
lar to ours, but for different purposes. Their initial language encodes



Figure 8: LDA - Metropolis-Hastings Predictive

distributions as an intermediate free monad representation (Mon-
adBayes2016 [21]) as proof-of-concept that the monad abstraction
can be used to construct probabilistic models whilst still offering
good performance during inference. They also later incorporate
free monad transformers but for the purposes of inference (Monad-
Bayes [23]). Their work differs from ours in that their languages
are query-based.

PPLs embedded in functional languages (Hakaru10 [11], Hansei
[14], Hakaru [17]) often employ tagless-final shallow embedding
Kiselyov [10] which encodes the syntax of the probabilistic lan-
guage as a type class and its semantics as type class instances.
These are fundamentally limited by having restricted compatibil-
ity with host language features; this results in having to redefine
well-known constructs, such as arithmetic operations and lambda
calculus terms, into the domain of their language. It is also com-
monly the case that these languages are not fully model-based,
requiring multiple model versions having to be implemented for
different interpretations.

PPLs which do achieve a proper model-based implementation do
this by taking advantage of the macro-compilation features of their
host language (Turing.jl [6], Gen.jl [5]) or by compiling to entirely
different languages (Stan [3]).

2. We allow observed variables of models to be stated as type class
constraints which can then be referenced inside the model via the
AffReader effect and extensible records. This delays interpretation
of probabilistic statements until observed data is provided.

Alternative solutions which model-based languages use include
macro-compilation and default behaviour for missing function ar-
guments (Turing.jl [6], Gen.jl [5]). A more common method is for
the user to manually address any probabilistic operations and pro-
vide a mapping between addresses and observed data (WebPPL [8],
Gen.jl [5], PyMC3 [20]). Extensible records have not previously
been seen adopted as a solution.

3. We encode simulation and inference as effect handler composi-
tion to perform a series of program transformations over a model
description; this effectively embeds a model into the context of a
specific algorithm.

The notion of using algebraic effect handlers for probabilistic
programming is still an emerging idea with little formal covering
material. This has been discussed briefly as a workshop paper by
Scibior and Kammar [22]; Moore and Gorinova [16] then provide
an extended abstract reviewing the use of effect handling for com-
posable program transformations in Pyro [2] and Edward2 [28]. We
hope to contribute a concrete and detailed implementation of this
method and an argument for its potential, especially in a strongly
functional paradigm.

4. Models are first-class objects, and as a consequence, this means
that models and primitive distributions can be treated similarly.
They can be combined and composed monadically, using functional
combinators such as kleisli composition, folding, mapping, etc. Most
model-based languages (Turing.jl [6], PyMC3 [20], Stan [3]) are not
capable of calling models from other models, and to the best of our
knowledge, none allow models to be composed or used generically
in higher-order functions.

7 Conclusion
The main focus of our work was to develop an embedding strategy
for a probabilistic language in a functional paradigm which allows
models to be constructed modularly. Our original ideals were that
models should only need to be defined once and then interpreted
for simulation/inference only when necessary. Moreover, models
need to be first class citizens for them to be considered modular –
one should be able to treat them as functions, compose them with
other models, and use them freely with higher-order functions.
Using algebraic effects and extensible data, we have managed to
achieve both of the advantages that query-based and model-based
languages offer whilst still allowing models to be written in an
elegant, minimal way, as demonstrated across a variety of examples.

There are two related topics of future work which are orthog-
onal to the goals of this paper. The first is to investigate deeper
into how effect handler techniques can be used to implement more
sophisticated, compositional inference algorithms than Likelihood-
Weighting and single-siteMetropolis-Hastings, e.g. SMC [24], SMC2

[4], PMMH [29]. The notion of using effect handlers to perform
compositional program transformations appeared extremely nat-
ural to us in the context of probabilistic programming, and we
were surprised that it was not a more popular discussion point;
we believe this has interesting potential and we aim to properly
explore its ability to design inference algorithms more modularly
as compositional building blocks.

The second future goal is to consider how the performance of
inference using effect handlers can be improved. Our language’s
performance was adequate for determining whether we could learn
realistic and interesting hierarchical models, but would be imprac-
tical for cases involving very large data sets and complex higher-
dimensional models. Of course, it is optimistic to hope to achieve the
performance of specialised inference-driven languages, but to be
competitive with the performance of general-purpose PPLs whilst
still being able to gain full leverage of functional programming
features would be considered a success.



References
[1] Leonard E Baum and Ted Petrie. 1966. Statistical inference for probabilistic

functions of finite state Markov chains. The annals of mathematical statistics 37,
6 (1966), 1554–1563.

[2] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj
Pradhan, Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, and
Noah D. Goodman. 2019. Pyro: Deep Universal Probabilistic Programming. J.
Mach. Learn. Res. 20 (2019), 28:1–28:6. http://jmlr.org/papers/v20/18-403.html

[3] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich,
Michael Betancourt, Marcus A Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell.
2017. Stan: a probabilistic programming language. Grantee Submission 76, 1
(2017), 1–32.

[4] Nicolas Chopin, Pierre E Jacob, and Omiros Papaspiliopoulos. 2013. SMC2: an
efficient algorithm for sequential analysis of state space models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 75, 3 (2013), 397–426.

[5] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K.
Mansinghka. 2019. Gen: A General-purpose Probabilistic Programming System
with Programmable Inference. In Proceedings of the 40th ACM SIGPLANConference
on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI
2019). ACM, New York, NY, USA, 221–236. https://doi.org/10.1145/3314221.
3314642

[6] Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: a language for flexible
probabilistic inference. In International Conference on Artificial Intelligence and
Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands,
Spain. 1682–1690. http://proceedings.mlr.press/v84/ge18b.html

[7] Peter W Glynn and Donald L Iglehart. 1989. Importance sampling for stochastic
simulations. Management science 35, 11 (1989), 1367–1392.

[8] Noah D Goodman and Andreas Stuhlmüller. 2014. The Design and Implemen-
tation of Probabilistic Programming Languages. http://dippl.org. Accessed:
2021-5-24.

[9] Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani.
2014. Probabilistic programming. In Future of Software Engineering Proceedings.
167–181.

[10] Oleg Kiselyov. 2012. Typed tagless final interpreters. In Generic and Indexed
Programming. Springer, 130–174.

[11] Oleg Kiselyov. 2016. Probabilistic programming language and its incremental
evaluation. InAsian Symposium on Programming Languages and Systems. Springer,
357–376.

[12] Oleg Kiselyov and Hiromi Ishii. 2015. Freer monads, more extensible effects.
ACM SIGPLAN Notices 50, 12 (2015), 94–105.

[13] Oleg Kiselyov, Amr Sabry, and Cameron Swords. 2013. Extensible effects: an
alternative to monad transformers. ACM SIGPLAN Notices 48, 12 (2013), 59–70.

[14] Oleg Kiselyov and Chung-chieh Shan. 2009. Embedded probabilistic program-
ming. In IFIP Working Conference on Domain-Specific Languages. Springer, 360–
384.

[15] Daan Leijen. 2005. Extensible records with scoped labels. Trends in Functional
Programming 6 (2005), 179–194.

[16] Dave Moore and Maria I Gorinova. 2018. Effect handling for composable program
transformations in edward2. arXiv preprint arXiv:1811.06150 (2018).

[17] Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and
Robert Zinkov. 2016. Probabilistic inference by program transformation inHakaru
(system description). In International Symposium on Functional and Logic Pro-
gramming. Springer, 62–79.

[18] Gordon Plotkin and John Power. 2003. Algebraic operations and generic effects.
Applied categorical structures 11, 1 (2003), 69–94.

[19] Gordon D Plotkin and Matija Pretnar. 2013. Handling algebraic effects. arXiv
preprint arXiv:1312.1399 (2013).

[20] John Salvatier, Thomas VWiecki, and Christopher Fonnesbeck. 2016. Probabilistic
programming in Python using PyMC3. PeerJ Computer Science 2 (2016), e55.

[21] Adam Ścibior, Zoubin Ghahramani, and Andrew D Gordon. 2015. Practical
probabilistic programming with monads. In Proceedings of the 2015 ACM SIGPLAN
Symposium on Haskell. 165–176.

[22] Adam Scibior and Ohad Kammar. 2015. Effects in Bayesian inference. InWorkshop
on Higher-Order Programming with Effects (HOPE).

[23] Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani. 2018. Functional program-
ming for modular Bayesian inference. Proceedings of the ACM on Programming
Languages 2, ICFP (2018), 1–29.

[24] Adrian Smith. 2013. Sequential Monte Carlo methods in practice. Springer Science
& Business Media.

[25] Josef Svenningsson and Emil Axelsson. 2015. Combining deep and shallow em-
bedding of domain-specific languages. Computer Languages, Systems & Structures
44 (2015), 143–165.

[26] Wouter Swierstra. 2008. Data types à la carte. Journal of functional programming
18, 4 (2008), 423–436.

[27] David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood. 2016.
Design and implementation of probabilistic programming language anglican.
(2016), 1–12.

[28] Dustin Tran, Matthew D. Hoffman, Dave Moore, Christopher Suter, Srinivas
Vasudevan, Alexey Radul, Matthew Johnson, and Rif A. Saurous. 2018. Simple,
Distributed, and Accelerated Probabilistic Programming. In Neural Information
Processing Systems.

[29] Tuyet Vu, Ba-Ngu Vo, and Rob Evans. 2014. A particle marginal Metropolis-
Hastings multi-target tracker. IEEE Transactions on Signal Processing 62, 15 (2014),
3953–3964.

[30] Howard Howie Weiss. 2013. The SIR model and the foundations of public health.
Materials matematics (2013), 0001–17.

[31] David Wingate, Andreas Stuhlmüller, and Noah Goodman. 2011. Lightweight
implementations of probabilistic programming languages via transformational
compilation. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics. JMLRWorkshop and Conference Proceedings, 770–778.

[32] Nicolas Wu and Tom Schrijvers. 2015. Fusion for free. In International Conference
on Mathematics of Program Construction. Springer, 302–322.

http://jmlr.org/papers/v20/18-403.html
https://doi.org/10.1145/3314221.3314642
https://doi.org/10.1145/3314221.3314642
http://proceedings.mlr.press/v84/ge18b.html
http://dippl.org

	Abstract
	1 Introduction
	1.1 An Outline of Probabilistic Programming
	1.2 Motivation: Query-Based & Model-Based Languages
	1.3 Contributions
	1.4 Structure of the Paper

	2 Capturing Probabilistic Models As Syntax
	2.1 Embedding Strategies
	2.2 Distribution Types
	2.3 Environments For Observable Variables
	2.4 Distribution Operations
	2.5 Example: Linear Regression

	3 Improving Our PPL Mechanism
	3.1 Affine Environments
	3.2 Addressing Probabilistic Operations
	3.3 Models and Distribution Operations, Revised
	3.4 Example: Hidden Markov Model

	4 Inference: Basic Handlers
	4.1 Handling AffReader
	4.2 Handling Distributions
	4.3 Composing Handlers: AffReader and Dist

	5 Inference As Effect Handler Composition
	5.1 Simulation
	5.2 Inference

	6 Related Work
	7 Conclusion
	References

