
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

3CPS:
The Design of an Environment-focussed

Intermediate Representation
John Reppy

Computer Science Department
University of Chicago
jhr@cs.chicago.edu

Olin Shivers
College of Computer Science
Northeastern University
shivers@ccs.neu.edu

ABSTRACT
We describe the design of 3CPS, a compiler intermediate represen-
tation (IR) we have developed for use in compiling call-by-value
functional languages such as SML, OCaml, Scheme and Lisp. The
language is a low-level form designed in tandem with a matching
suite of static analyses. It reflects our belief that the core task of an
optimising compiler for a functional language is to reason about the
environment structure of the program. Our IR is distinguished by
the presence of of extent annotations, added to all variables (and ver-
ified by static analysis). These annotations are defined in terms of
the semantics of the IR, but they directly tell the compiler what ma-
chine resources are needed to implement the environment structure
of each annotated variable.

KEYWORDS
lambda, compiler, intermediate representation, functional language

1 INTRODUCTION
We have been designing an intermediate representation (IR), called
3CPS, that is intended to be used as the central representation in an
optimising compiler for call-by-value functional languages, such as
SML, OCaml or Scheme. 3CPS is a low-level representation, based
on continuation-passing style [7]; its key novel design element is
the presence of extent annotations on variables that classify each
variable’s binding lifetime. These annotations are defined in terms
of the _-calculus semantics of the IR, but provide direct guidance
on how to map the environment structure of the IR term down to
the target machine.

These annotations are a specific instance of a more general ap-
proach to compilation: our IR is designed to enable the compiler
to focus on the environment structure of the program. In this ar-
ticle, we’ll explore this concept and how it enables the task of
high-performance compilation.

2 SCOPE AND EXTENT
In this paper, we focus on the act of binding variables: that is, what is
necessary to associate a variable with some value as some computa-
tion proceeds. In particular, we focus on the resource management
needed to implement bindings. Variable bindings have two axes

Authors’ addresses: John Reppy, Computer Science Department, University of Chicago,
jhr@cs.chicago.edu; Olin Shivers, College of Computer Science, Northeastern Univer-
sity, shivers@ccs.neu.edu.

2021. 2475-1421/2021/1-ART1 $15.00
https://doi.org/

of existence, which one might refer to as “spatial” and “temporal:”
that is, scope and extent.

Scope. The well-understood notion of “scope” determines where
in the program some binding is visible for reference, as determined
by the “lexical scope” rule of the _-calculus. Scope brings with it the
associated notion of “free variables.” There is a producer/consumer
relationship at any given code point between the set of variables in
the current scope, and the ones in the free-variable set: the variables
in scope are the bindings being provided to the code point, while
the ones in the free-variable set are the ones being used by the code
at that point. The latter set is, of course, a subset of the former.

Extent. The notion of “variable extent” is the lifetime of the
variable’s binding. In a language such as C, for example, any binding
of a procedure parameter has an extent which is terminated by
the point in time when the procedure returns: we can say that
such a variable has “stack extent,” which means that each binding
can be implemented using a slot in the procedure’s call frame on
the run-time stack. In higher-order functional languages, however,
bindings can have a lifetime that extends beyond the invocation
of their binding procedure, which is why we frequently think of
variable bindings as occurring by allocating environment frames in
a garbage-collected heap.

It is important to keep in mind that this view of variable binding
as heap allocation is simplistic: it is merely the most general — and,
therefore, most heavyweight — implementation choice available to
a compiler. Many variables in a program have restricted binding ex-
tent, which means that they can be implemented using significantly
lighter-weight mechanisms.

Lambda as an abstract mechanism. From the compiler’s point
of view, it is useful to think of _ as being a simple interface to
a collection of mechanisms. The compiler’s job is to take each _

expression that occurs in the program and use static information to
index into the set of possible mechanisms, choosing the most effi-
cient one that handles the requirements of the term. Some _ terms
will need the general, heavyweight mechanism of heap-allocated
bindings; others can keep their bindings on a stack; still others
turn into register-allocation decisions; while others are completely
discharged at compile time, and have no real existence as run-time
computational artifacts. The programmer is encouraged to use _
terms in a profligate way, relying upon the compiler, as described
above, to render each _ term as efficiently as possible.

A key piece of information that helps a compiler determine the
most efficient means of implementing a given _ expression is the
extent of the bindings created when control enters the expression.

1

https://doi.org/

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA John Reppy and Olin Shivers

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

The key insight is that the extent of the bindings maps naturally
onto the distinct storage mechanisms of standard hardware:

Register If, whenever some variable is bound to a value, we are
guaranteed that there are no other bindings of that variable
“live,” or accessible, in the machine state, then we say the
variable has “register extent,” which permits us to assign the
variable a machine register. To “bind” the variable to some
value, we simply move the value into the corresponding
register, which, of course, overwrites any previously created
bindings for the variable; this will not be a problem as there
are no live closures over one of these previous bindings.

Stack If, whenever some variable is bound to a value, it is
guaranteed that there will be no uses of that binding after
control has returned from the binding _, then we can allocate
the binding on the run-time stack.

Heap Finally, if a variable’s binding can be referenced after
control returns from its binding _ expression, then we must
allocate the binding on some garbage-collected heap. This is
the most general, most heavyweight environment-structure
allocation mechanism of last resort.

Note that when we say a variable has “register extent,” we are
saying that the variable could, in principle, be implemented by
assigning it a machine register chosen at compile time, on an ab-
stract machine that had enough registers. The task of assigning all
such variables actual machine registers (or statically fixed memory
locations) using liveness-derived interference information is well
understood and not our focus here.

To illustrate, consider the SML function

fun adder x = (fn y => x+y)

In this code, the parameter x must be bound using a heap-allocated
environment frame on entry to adder, as the binding remains live
after the return of its binding function. In contrast, the y variable
could be bound using a slot in the stack’s call frame allocated on
entry to the binding fn term. In fact, we can do even better: because
only one binding of y is ever live at any time, we can keep y in a
statically-chosen register. To bind y, we simply move its associated
value into the register (thus overwriting any prior binding of the
variable).

Note that this is different from the “flat closures” model that
allocates environment structure when bindings are captured. In
our example, this would allocate space for the binding of x when
creating the closure for the inner function, not when entering adder.
(We will return to this distinction later.)

For another example, consider the recursive function that com-
putes the factorial of its parameter n.

fun fact n =
if n=0 then 1
else n * fact(n-1)

If we compute the factorial of 5, then by the time we encounter the
n = 0 base case, we will have six bindings (to the values 0 through
5) of the same parameter n all simultaneously live; we’ll reference
these bindings as the program unwinds out of the recursion, do-
ing the pending multiplies. Having multiple simultaneously live
bindings rules out using a register for the n environment. However,

each binding of n goes dead when control returns from its binding
term, so we can use a stack slot here.

Environment structure vs. data structure
Note that the memory resources we are allocating here (register,
stack-frame slot, heap-frame slot) represent environment structure
(that is, bindings associating variables and values), not data struc-
ture (that is, values themselves). The compiler must choose, for
each variable in a program, how to implement its various dynamic
bindings. Our focus here is on this decision, and we start by draw-
ing attention to the key observation that this decision is driven by
consideration of each variable’s lifetime, or extent.

This distinction between environment structure and data struc-
ture can be a little subtle to make. Data values are items such as
integers, booleans, and linked lists; they are the things manipulated
by the program. Environment structure is the run-time resources
used to associate variables with values. For example, when control
enters a C procedure, the function-call protocol allocates a stack
frame, where we store the values of incoming parameters. The stack
frame is a block of memory, just as a hash table or an element of a
linked list is — however, this block of memory does not incarnate a
data value. The running program can’t make an array or a linked
list of stack frames; it cannot pass a stack frame as an argument to a
function, or return one as the result of a call. Environment structure
is something that occurs beneath the level of the language.

So far, so good. The subtlety arises as environment structure be-
comes intertwined with data structure in a language that includes
a lambda form. When program execution evaluates a lambda term,
it creates a value, called a closure, that is a kind of procedure. This
value is essentially a record (that is, a block of memory) that pack-
ages up two components: (1) a reference to the machine code that
carries out the lambda term’s computation, and (2) the environment
structure for the dynamic environment context that exists at the
point of evaluation, which will provide values for the lambda’s
free-variable references when the closure is called.

Thus, a closure is a value — one that packages up an environment.
On the other hand, an environment is a little table of values —
one for each variable bound in the environment. So data structure
(closures) reference environment structure (bindings), which, in
turn, reference data structure (other values).

If we wish, we can push things around this cyclic pair of mutually
recursive definitions to shift “ownership” of semantic elements, so,
to some degree, the distinction is not fixed and immutable. Also, the
view we’ve articulated above is a simple view, one that corresponds
to a simple interpreter we might write for a functional language.
If we examined such an interpreter, we would see places where
primitive value-constructor operations (such as cons) allocated
items intended to be values (list nodes, hash tables, closures), and
other places where the interpreter allocated environment records
to hold the values bound to variables. The latter structures require
memory, just as the list nodes and hash tables do, but they are not
values.

We can see such an example interpreter in the form of the small-
step operational semantics we develop in a following section.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

3CPS Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3 THE 3CPS INTERMEDIATE
REPRESENTATION

The impact of variable extent on the selection of machine resource
to implement environment structure leads us to making these
choices explicit in a compiler intermediate representation (IR). We
propose a very simple IR, which we call 3CPS, that is simply a
standard, low-level CPS representation, augmented by annotating
every variable with an “extent mark,” one ofH , S, and R.

Figure 1 shows the grammar of 3CPS. Note that our IR is a
“factored” CPS: that is, all variables, call sites, and _ terms are syn-
tactically segregated into two classes: “user” variables, calls, and _
terms, and “continuation” variables, calls, and _ terms. It is a funda-
mental property of the CPS transform from a direct-style program
that we can do this factoring, which carries over from the syntactic
domains to the semantic ones: all procedural values can likewise be
split into user and continuation values. “User” procedures are only
made by evaluating user _ terms; these procedures are only bound
to user variables and are only called from user call sites. Likewise,
continuation values are only made from cont forms; are only bound
to continuation variables; and are only called from continuation
call sites. Compilers have used factored CPS IRs going back to the
Orbit compiler [3, 4] in the 1980s.

The cross-product of the user/continuation distinction and the
three kinds of extent mark give us, then, six different kinds of
variables, where we write the extent annotation as a superscript:

UVarH =

{
zH, iH, . . .

}
CVarH =

{
k1H, topcontH, . . .

}
UVarS =

{
zS, iS, . . .

}
CVarS =

{
k1S, topcontS, . . .

}
UVarR =

{
zR , iR , . . .

}
CVarR =

{
k1R , topcontR , . . .

}
A full IR for a practical compiler additionally requires some kind

of letrec form for creating circular environment structure and
primitive operations (or “primops”) for the built-in atomic opera-
tions the compiler directly handles, such as addition and subtraction.
We elide these details from this presentation to keep things simple
and focused; they are straightforward to include.

As is typically the case in a low-level IR, we assume that all
syntactic points in a program are assigned a unique label, which
permits us to easily refer to points in the program, and we assume
that all variables in the program are “alphatized,” that is, assigned
unique names. Having defined all program points to have a unique
label, we proceed to suppress these labels whenever they are not
required for some specific purpose.

In the syntax productions of Figure 1, we employ the convention
of using ellipses “. . .” to mean “zero or more occurrences of the
preceding element.” Thus, a user _ term ulam has exactly one user-
variable formal parameter 𝑥 , and one or more continuation-variable
formal parameters 𝑘𝑖 . Again, a full IR for a practical compiler would
likely extend both user and continuation _ terms (and their cor-
responding call forms) to permit them to be passed multiple user-
value arguments, to allow the compiler to “spread” values across
multiple parameters. Again, we elide this detail for simplicity.

Although our core IR restricts user and continuation _ terms
to take only a single user-value parameter, user _ expressions can
have multiple continuation parameters. Being able to pass multiple
continuations to a procedure permits a compiler to implement

exception handlers and other non-local control mechanisms by
means of alternate continuations. We additionally assume that user
lambdas only close over user variables UVar , never continuation
variables CVar . If our source language does not contain some sort of
call-with-current-continuationmechanism, this is a property
of CPS conversion and is simple to maintain through subsequent
transformations; it is key to providing the kind of a simple stack-
management policy we’ll develop in the following section.

4 THE 3CPS MACHINE
Aprogramwritten in 3CPS executes on an abstract machine that has
three resources for allocating environment structure: a register set,
a stack, and a heap, all of unbounded size. Environment structure
is allocated on the stack and in the heap in units of “frames.” For
the purposes of our abstract machine, we represent a given frame
as a partial function (or table) mapping the variables bound by that
frame to their corresponding values. Thus, we model the stack as a
sequence of frames that advances and retreats as we enter into and
return from variable-binding procedures; likewise, we model the
environment heap as a collection of frames that live forever.

Note that our focus in this abstract machine is on environment
structure, not data structure: the elements that are created in the
heap and on the stack are variable-binding frames, structures that
associate variables with values, not the values themselves, such as
procedure closures, list structure, arrays, and so forth.

Our abstract machine is defined by a small-step operational se-
mantics that steps a machine with the given resources (that is, a
register set, a stack of frames, and a heap of frames). Because our
focus is on the management of environment structure, our seman-
tics is environment-based, not substitution-based. The semantic
domains of the machine are given in Figure 2.

Several details of these domains are worth examining. Suppose
some user _ term ulam binds several parameters, a mix of heap
vars, stack vars, and register vars.1 Whenever control enters that
term, the machine allocates two fresh frames: one in the heap, with
unbounded extent, and one on the stack, with “stack” extent. The
bindings for the heap-marked parameters are made in the heap
frame; likewise, the bindings for the stack-marked parameters are
made in the stack frame. The register-marked parameters are bound
by updating the machine’s global register set with the new values;
any overwritten entries are irrelevant by the rules for register-
extent variables.

When control enters a continuation cont term, we do exactly
the same thing: we allocate a fresh heap frame and a fresh stack
frame, and bind our three classes of variable in the appropriate
places. Note that continuation terms create heap frames just as user
_ terms do. This is because the extent of a variable is determined by
the code that refers to it, not the code that binds it. While it is true
that continuation-bound variables created by the CPS-conversion
process to hold temporary values can never have free references in
user code that escapes the binding context, this is only the case for
the code produced by the CPS converter. A compiler can introduce

1The ulam term is more likely to have parameters in multiple extent classes in a more
full-featured IR where a user _ term can take multiple user-value parameters, of course.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA John Reppy and Olin Shivers

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

𝑥 ∈ UVar = UVarH + UVarS + UVarR User variables (three kinds)
𝑘 ∈ CVar = CVarH + CVarS + CVarR Continuation variables (three kinds)
ℓ ∈ Label = a set of labels

ulam ∈ ULam ::= ℓ:(_ (𝑥 k1 k2 . . .) pr) User-procedure abstraction
clam ∈ CLam ::= ℓ:(cont (𝑥) pr) Continuation abstraction

ae, 𝑓 ∈ Arg = ULam + UVar Value expressions
𝑞 ∈ Cont = CLam + CVar Continuation expressions
pr ∈ Prog ::= ℓ:(𝑓 ae q1 q2 . . .) Call to user procedure

| ℓ:(𝑞 ae) Call to continuation (i.e., return)
Figure 1: Core grammar of the 3CPS intermediate representation.

fr ∈ Frame = (UVar + CVar) ⇀ (UClo + CClo)
hp ∈ Heap = Contour ⇀ Frame
st ∈ Stack = Frame∗ (Base is st [0]; top is st [|st | − 1].)

regs ∈ Regs = Frame

𝑑 ∈ UClo = ULam × HCEnv × SCEnv
𝑐 ∈ CClo = CLam × HCEnv × SCEnv × StackIndex

𝛽 ∈ HCEnv = Label ⇀ Contour
𝛾 ∈ SCEnv = Label ⇀ StackIndex
StackIndex = N

Contour = N

EvalState = Prog × HCEnv × SCEnv × Heap × Stack × Regs
ApplyState = UClo × Value × CClo+ × Heap × Stack × Regs

∪ CClo × Value × Heap × Stack × Regs

Figure 2: Semantic domains of 3CPS.

such free references by means of optimizing source-to-source trans-
formations later in the compilation process, so we need to permit
this case in the semantics.

All heap frames live in a global frame heap hp; all (live) stack
frames live on the stack st; the register set is modelled as a single
frame, regs. If control enters some _ term multiple times, we can
have multiple bindings of the same variable all simultaneously
live in different heap frames (if the variable is a heap variable), or
simultaneously live in different stack frames (if the variable is a
stack variable). If, for example, we have five different frames in
the machine’s frame heap all providing bindings for the variable i,
we need some way to determine when the machine is evaluating
a reference to i which binding is visible in the current context.
This disambiguation is managed by means of the lexical context
environments 𝛽 and 𝛾 .

Suppose themachine is evaluating code at some point ℓ in the pro-
gram, and that ℓ appears nested inside six binding forms, ℓ0, . . . , ℓ5,
that is, six lexically nested user and continuation _ terms, where ℓ0
is the topmost term in the program, and ℓ5 is the immediate parent
of term ℓ . The variables lexically visible at point ℓ are all bound by
one of these six forms, and so their bindings are contained in six
heap frames and up to six stack frames (after all, control may have
returned back through some of the stack frames for these lexical
parent forms, rendering their stack-bound variables inaccessible).

Suppose code point ℓ contains a lexical reference to some variable
i that is a stack-bound parameter of, say, parent term ℓ3. If i is
bound by some deeply recursive computation, there may be many

binding frames for i currently live on the stack. Which is the one
visible in the current context? This query is resolved by the lexical
frame environment 𝛾 , which, in our example, provides the indices
of the six stack frames lexically visible in this context. That is, 𝛾 is
a partial function mapping the six labels ℓ0, . . . , ℓ5 to the locations
of the relevant frames on the stack; so 𝛾 ℓ3 is the stack index of
the frame we want. If we think of 𝛾 as a six-item vector of indices
instead of a partial function, then it becomes clear that 𝛾 is just
what a Pascal or Algol compiler would consider a “display.”

Likewise, the lexical frame environment 𝛽 provides the context
that indicates which heap frame to use for a variable reference of
the possibly many such frames in the frame heap. This machinery is
essentially the same mechanism as was developed for 0CFA higher-
order flow analysis [6].

We represent user proceduresUClo as closures: records ⟨ulam, 𝛽, 𝛾⟩
that package up some _ term and two lexical frame environments
specifying which binding frames are captured by the closure. Con-
tinuations are handled in a similar fashion, as defined by the set
CClo, except that creating continuation closures also records the
size of the stack at the time of creation, which incarnates the infor-
mal observation that continuations represent the stack.

As our specification semantics is a classic eval/apply transition
system, we have two kinds of machine state. An eval machine state
is a tuple: a program term (the “pc”), the lexical frame environments
𝛽 and 𝛾 as described above, and the frame heap, frame stack, and
register set. The machine’s job, when in an eval state, is to evaluate
the elements of a call (that is, the call’s function term and all its
arguments). Once these values have been produced, the machine
transitions to an apply state, which consists of the usual global
machine state (that is, the frame heap, the stack and the register
set), plus the procedure being applied and its argument values. We
have two kinds of apply state, one for applying user procedures;
the other, for applying continuations.

We provide the machine’s state transitions in Figure 4 and 5.
The transitions are assisted by the auxiliary functions shown in
Figure 3. The auxiliary functions A𝑢 and A𝑐 are used to evaluate
the individual “trivial” elements of a call form (variable references
and _ terms) to values. A _ term is evaluated by packaging it up
with the current lexical frame environments 𝛽 and 𝛾 to make a
closure; continuation closures additionally capture the size of the
current stack, |st |. Variable references are handled by looking up the
variable in the appropriate frame, as determined by the variable’s
extent mark. For heap and stack variables, we locate the right frame
using 𝛽 or 𝛾 , respectively; the binder function is a how we model
mapping a variable to the label of its binding _ term.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

3CPS Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

A𝑢 : Arg × HCEnv × SCEnv × Heap × Stack × Regs ⇀ UClo

A𝑢 ae 𝛽 𝛾 hp st regs =

⟨ae, 𝛽, 𝛾⟩ if ae ∈ ULam
hp(𝛽 (binder(ae)) ae if ae ∈ UVarH (i.e., ae is heap var)
st [𝛾 (binder(ae))] ae if ae ∈ UVarS (i.e., ae is stack var)
regs ae if ae ∈ UVarR (i.e., ae is reg var)

A𝑐 : Cont × HCEnv × SCEnv × Heap × Stack × Regs ⇀ CClo

A𝑐 𝑞 𝛽 𝛾 st regs =

⟨𝑞, 𝛽,𝛾, |st |⟩ if 𝑞 ∈ CLam
hp[𝛽 (binder(𝑞))] 𝑞 if 𝑞 ∈ CVarH (i.e., 𝑞 is heap var)
st [𝛾 (binder(𝑞))] 𝑞 if 𝑞 ∈ CVarS (i.e., 𝑞 is stack var)
regs 𝑞 if 𝑞 ∈ CVarR (i.e., 𝑞 is reg var)

StackTrim : Stack × CClo+ ⇀ Stack
StackTrim(st, [𝑐1, . . .]) = let len = max𝑖 {sp | ⟨clam, 𝛽, 𝛾, sp⟩ = 𝑐𝑖 }

in st [0..𝑙𝑒𝑛)
Figure 3: Semantics auxiliary functions

The StackTrim function is responsible for popping stack frames,
both on function return (that is, when calling a continuation), and
during a tail call. It takes the current stack and a collection of
continuations, each of which records its stack needs in the fourth
element sp of the continuation closure. The StackTrim function
trims the stack back as far as possible while preserving the portion
of the stack captured by each continuation.

As we’ll see in the transition system, it is an invariant that when
the machine is in an apply state for a user procedure, for each
continuation argument, the stack at the time the continuation was
created is a prefix of the current stack, and the current stack exactly
matches the creation-time stack for at least one of the continuations.

Likewise, when the machine is in an apply state for a contin-
uation, the current stack is the same as the stack at the time the
continuation was created.

With these definitions in hand, the actual transition system
is fairly straightforward. Figure 4 shows the eval-to-apply state-
transition schema. They are exactly the transitions of a classic CPS
machine, with two additions. First, we handle variable references
according to their extent marks, looking them up in a heap frame,
a stack frame, or the register set as indicated. Secondly, after using
the current context to produce the values needed for the upcoming
apply state, we pop any frames off the stack that are not retained
by live continuations. In the case of evaluating a user-call form, this
would mean that the stack’s top frame would be deleted unless one
of the 𝑞𝑖 continuation arguments was a cont form whose closure
captured the current frame. This is how tail-call stack management
is provided.

The apply-to-eval transitions are shown in Figure 5. This transi-
tion is principally involved in creating new environment structure
— binding incoming argument values to their corresponding formal
parameters.

What’s key about our semantics is that it defines an explicit,
mechanistic policy for the stack: when frames are created and
pushed on the stack, and when they are popped from the stack.
(It is an odd fact that it is hard to come by formally defined stack-
management policies for CPS languages. It is not uncommon, in
our experience, to hear members of our community assert that CPS
languages “cannot use” a stack, which is certainly not the case, as
was evinced as far back as the early 80’s by the T implementation’s
Orbit compiler [3, 4]. One of the contributions of this paper is to

⟨⟦(𝑓 ae 𝑞1 𝑞2 . . .)⟧ , 𝛽, 𝛾, hp, st, regs⟩ −→
⟨proc, arg, conts, hp, st ′, regs⟩

where proc = A𝑢 𝑓 𝛽 𝛾 hp st regs
arg = A𝑢 ae 𝛽 𝛾 hp st regs
conts[𝑖] = A𝑐 𝑞𝑖 𝛽 𝛾 hp st regs
st ′ = StackTrim(st, conts)

⟨⟦(𝑞 ae)⟧ , 𝛽, 𝛾, hp, st, regs⟩ −→ ⟨𝑐, arg, hp, st ′, regs⟩
where 𝑐 = A𝑐 𝑞 𝛽 𝛾 hp st regs

arg = A𝑢 ae 𝛽 𝛾 hp st regs
st ′ = StackTrim(st, [𝑐])

Figure 4: 3CPS eval-to-apply state transitions

provide a clear specification, in the form of our semantics, for the
stack-management policy of a CPS language.)

Our stack-management policy correctly handles the eager frame-
pop required by tail calls, and it permits continuations to be invoked
with non-local “throws” to implement mechanisms such as excep-
tion handling. In the compiler we are currently developing based
on 3CPS, all control is made explicit, including exceptions. For ex-
ample, the addition operator takes two continuations: the “normal”
or “success” continuation, which is called on the sum of the opera-
tor’s two numeric operands, when the addition succeeds, and the
“error” or exception continuation, which is called when the addition
overflows.

Nailing down when stack frames are created/pushed and de-
stroyed/popped means that we now have a precise definition of
“stack extent:” a variable binding has stack extent if the binding is
never referenced after control returns from the function that bound
the variable.

4.1 Who marks the variables?
Now that we have defined ourmachine, we can consider its behavior.
First, we should note that it is possible to write misbehaving code
that does not play by the rules of the resource management encoded
by the machine. For example, we can mark variables with stack
or register marks that actually require heap binding. Executing
such a program will get stuck in a state attempting to reference a
variable from a stack frame that has been previously popped and is

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA John Reppy and Olin Shivers

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

⟨⟨⟦ℓ:(_ (𝑥 𝑘1 𝑘2 . . .) pr)⟧ , 𝛽, 𝛾⟩, arg, conts, hp, st, regs⟩
−→ ⟨pr, 𝛽 ′, 𝛾 ′, hp′, st ′, regs′⟩

where cnt = fresh contour (i.e., unused in machine state)
hframe = [𝑥 ↦→arg, 𝑘𝑖 ↦→conts[𝑖]] for all 𝑥 , 𝑘𝑖 heap vars
𝛽 ′ = 𝛽 [ℓ ↦→cnt]
hp′ = hp[cnt ↦→hframe]

sframe = [𝑥 ↦→arg, 𝑘𝑖 ↦→conts[𝑖]] for all 𝑥 , 𝑘𝑖 stack vars
𝛾 ′ = 𝛾 [ℓ ↦→ |st |]
st ′ = st@ [sframe]

regs′ = 𝑟𝑒𝑔𝑠 [𝑥 ↦→args, 𝑘𝑖 ↦→conts[𝑖]] for all 𝑥 , 𝑘𝑖 reg vars

⟨⟨⟦ℓ:(cont (𝑥) pr)⟧ , 𝛽, 𝛾, tos⟩, arg, conts, hp, st, regs⟩
−→ ⟨pr, 𝛽 ′, 𝛾 ′, hp′, st ′, regs′⟩

where cnt = fresh contour (i.e., unused in machine state)
hframe = [𝑥 ↦→arg] if 𝑥 ∈ UVarH , otherwise []
𝛽 ′ = 𝛽 [ℓ ↦→cnt]
hp′ = hp[cnt ↦→hframe]

sframe = [𝑥 ↦→arg] if 𝑥 ∈ UVarS , otherwise []
𝛾 ′ = 𝛾 [ℓ ↦→ tos]
st ′ = st@ [sframe]

regs′ = regs[𝑥 ↦→arg] if 𝑥 ∈ UVarR , otherwise regs
Figure 5: 3CPS apply-to-eval state transitions

no longer available in the machine, or simply quietly proceed with
the value of the wrong binding.

On the other hand, it is easy to state what “correct” behavior
of the machine is. If we simply mark all variables in a program as
heap bound, then it is clear by inspection that what we have is a
classic CPS interpreter, with an associated stack and register set
that are never used. The stack advances and retreats as we call into
and return from user functions, but it contains no bindings, so this
is irrelevant. We can find essentially this exact machine scattered
throughout the CPS literature.

We can then regard stack and register markings simply as op-
timizing transformations (ones which make use of the more light-
weight machine resources) that are required not to alter the course
or final result of the computation.

As Vardoulakis and Shivers showed [8, 9], some stack marks
can be trivially determined by simple syntactic criteria. (And the
structural insights of this work are, in fact, the proximate source
of the research agenda we are developing around the 3CPS IR.)
For example, any variable that is only captured by cont forms,
not by user _ terms, can be given stack extent; as this is true of
all continuation variables (a property of the CPS translation that
we assume is preserved by compiler transforms) they can all be
immediately demoted from heap to stack extent.

The important question that follows, then, is: can static analysis
improve the extent-marking “yield” beyond the low-hanging fruit
of Vardoulakis and Shivers’ simple syntactic criteria? If so, then we

have opened up a new avenue for optimizing the management of
environment structure in higher-order functional programs. This
is our current research agenda.

5 WHEN IS ENVIRONMENT STRUCTURE
ALLOCATED?

One of the confusing aspects of the functional-language compiler
literature is sorting out when a given compiler arranges for the pro-
gram to allocate environment structure. It is frequently left implicit,
for the reader to tease out from the detailed mass of decisions the
compiler makes. The issue is made even more complex by the fact
that the compiler is permitted great flexibility in making these de-
cisions, because a different scheme can be chosen for each lambda
in the program: only the lambda’s machine code need hew to the
layout made for its closure environment.

That said, there are essentially two basic strategies:

allocate-on-closure The Orbit compiler [3] is an example of
this paradigm, as is SML/NJ [1]. Orbit passes arguments to
procedures in fixed registers. When a lambda is evaluated,
the code gathers up the values of the lambda’s free variables
and allocates an environment record to hold them. The envi-
ronment record also includes references to lexically outer en-
vironment records; thus the innermost environment record
can share storage with previously allocated environments;
this is referred to as a “linked environment” representation.
(Also, the record can include references to the machine code
for a given lambda term, so it does double duty as both
environment structure and a closure value.)
SML/NJ implements a variation on this technique: when
evaluating a lambda term, the code accesses the values of the
term’s free variables, then builds a fresh environment record
with just these needed bindings. Thus, a variable/value pair
bound on entry to lambda ℓ can occupy a slot in four dif-
ferent closure records, if we evaluate four different lambda
terms that appear lexically inside ℓ , all of which contain free
references to the given variable.
It might seem, at first glance, that this so-called “flat closure”
scheme is more expensive than the Orbit’s shared- or linked-
environment scheme, but the payoff is that environment
records only contain “live” variable bindings: every time we
make an environment record, we copy only what we need to
make the fresh environment (that is, only bindings for free
vars). Flat closures thus have the “safe for space” property.
More complex schemes [5] can be built out of this basic
technique, that share common environment structure only
when the compiler can determine that the bindings kept in
a given environment record all have the same lifetimes.

allocate-on-entry What we are using in our semantics for
3CPS is a different policy. As we saw in the previous section,
when control enters a given lambda term, our machine allo-
cates a stack frame and a heap frame (each possibly empty);
the arguments being passed in by the caller that must be
bound to the lambda’s parameters are then stored in one of
these frames, or in a machine register, as the directed by the
extent annotation on each parameter.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

3CPS Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Using allocate-on-entry, as we are doing, has a couple of useful
properties. First, it is nicely mechanistic, which is what makes it
possible for us to define the extent of bindings with rigor. It permits
us to talk about binding variables on the stack, again using the fixed
mechanism of the 3CPS abstract machine to specify when the stack
advances and retreats, which, in turn, gives a precise notion of the
lifetime of bindings made with “stack” extent.

Second, allocate-on-entry is expressive, in multiple ways:

flat vs. linked environments Because the allocate-on-entry
paradigm is a simple, fixed mechanism, we can use it to
express allocate-on-closure decisions about environment
structure with source-to-source transforms.
For example, suppose heap-extent variables x and y are
bound by the same lambda term (_ (x y k1) . . .), and
this expression contains within it a second lambda term that
refers to x but not y:
(_ (x y k1)
(k1 (_ (z k2) (+ z x k2))))

On entry to the outer lambda, we allocate a frame to hold
the values of x and y. The inner lambda (_ (z k2) . . .)
closes over this frame, so as long as this inner closure exists,
we will retain a reference to the value of y. . . even though no
code will ever reference y.
If a compiler wishes to be safe-for-space, it can wrap the
inner lambda term in a let that copies x to an independent
variable w:
(_ (x y k1)
(let ((w x))

(k1 (_ (z k2) (+ z w k2))))
Here, we are using the let form as syntactic sugar for an
[-redex of a cont form:
(_ (x y k1)
((cont (w)

(k1 (_ (z k2) (+ z w k2))))
x))

In this way, various complex policies can be represented as
patterns of let-bindings directly in the IR form.

Specialised function protocols A typical function-call pro-
tocol for a procedural language like C or Scheme is to, say,
pass the first four arguments to the function in registers, and
the rest on the stack. We can easily express this by annotat-
ing the first four parameters of the function with an R mark,
and the rest with an S.
If the body of the function uses the variables in ways that
are not compatible with these annotations, we handle this
by let-binding the incoming parameters to fresh variables
that have the needed annotations. For example, a parameter
that is passed in a register but is live across a recursive call
must be copied to a stack-extent variable with a let.
In other words, in the presence of extent annotations, a
variable/variable let binding
(let ((x y)) body)

has machine-level pragmatics. If x is a register-extent vari-
able, then the let is a memory load or a register copy, de-
pending on the extent mark of y. If x is a stack- or heap-
extent variable, then the let is a memory store or memo-
ry/memory copy, again depending on the extent mark of y.
This memory traffic, which is a required part of managing
the interaction between the particulars of the calling proto-
col and the uses made of the variables, can be expressed at
the IR level in 3CPS.
What’s more, we can now specialise calling protocols at a
per-lambda and per-call granularity, as guided by higher-
order control-flow analysis [6]. We intend to explore the
opportunities for optimisation made possible by this kind of
linkage specialisation in the experimental compiler we are
building around the 3CPS IR design.

Expressing storage-class requirements of primitives It’s
common on many CPU architectures for basic machine op-
erations, such as addition, to require their inputs to be in
registers. Just as with our function-call protocols, we can
make this explicit, too, in 3CPS. For example, suppose we
want to add x and y, binding the resulting sum to z. In 3CPS,
we would write
(+ x y (cont (z) . . .))

However, if x has heap extent, and y has stack extent, then
these two input variables occupy slots in some heap and
stack frame, respectively. If the target machine’s addition
operator takes its inputs in registers, then the + primitive
cannot be applied to x and y. Likewise, + leaves its result in
a register, which will be a problem if z is marked as a heap
or stack variable.
We can handle this with more let shuffling:
(let ((aR xH) ; Load x into reg a.

(bR yS)) ; Load y into reg b.
(+ a b ; Add regs a & b...

(cont (cR) ; ...result in reg c.
(let ((zS c)) ; Store c into stack frame.

. . .))))
and then optimise away as many copies as possible with
extent-aware 𝛽-reduction.

6 COMPUTATIONAL POWER AND
ENVIRONMENT EXTENT

It’s worth taking a moment to consider the computational power
of 3CPS when we restrict environment structure to specific storage
classes. Suppose we extend 3CPS with reasonable additions needed
for general computation: a letrec form to express circular scope
and permit recursion, a conditional if/then/else form, a handful of
primitive operations such as addition and multiplication, and a set
of constant, literal arguments, such as booleans and 32-bit integers.

If we only permit the programmer to write terms whose vari-
ables have register extent, what is the computational power of our
language? Any finite program will only use a finite number of
register variables. In all such programs, we never close over stack-
or heap-extent variables, so we don’t need closures at all! We can
instead represent a procedure purely by its lambda term. As vari-
ables are all register extent, all bindings live in the machine’s global

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA John Reppy and Olin Shivers

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

register set. Note that we have a finite space of values: two booleans,
integers in the range [−(231), 231 − 1], plus all possible procedures.
Since a procedure is specified entirely by its lambda term (with no
environment component), we have as many procedures as there are
lambdas in the program, plus our small set of primitive operations.
Let 𝑛 be the size of the value space for our program, and ℓ be the
number of lambda terms (user and continuation) and primitive
operations in the program.

If we have 𝑚 variables in our program, the machine state is
given by the contents of the𝑚 registers that hold the values of the
variables, plus the “pc,” that is, the label of the current lambda being
executed. So the machine only has 𝑛𝑚 × ℓ distinct states — the heap
and the stack are irrelevant.

Thus our program is a finite-state machine.
Suppose that we then change the rules and permit the program-

mer to use stack-extent variables. It straightforwardly follows that
our programs are push-down automata.

Finally, suppose we permit heap-extent variables. This is simply
Church’s _-calculus, so we are back up to the top of the power
hierarchy, with a Turing-equivalent language.

In short, the power of the language is directly determined by the
power of the environment structure we permit. This affords us a
new view of the optimising compilation process: the compiler’s
job is to take a term written using general, heavyweight heap-
extent variables, do higher-order flow analysis to determine binding
lifetimes, and use this information to demote variables from heap
extent down to stack extent, or from stack extent down to register
extent.

In other words, the compiler is identifying fragments of the
source program that are push-down automata or finite-state au-
tomata, and implementing these parts using weaker, cheaper, faster
machine resources that are sufficient for these restricted computa-
tional domains: we don’t bind variables on the heap if we can do
so on the stack; we don’t use memory at all if we can use registers.

7 3CPS AND SSA
It is a commonly expressed opinion in the realm of functional
programming to claim that “SSA is just CPS” [2]. There is some
truth to this belief, but a closer look shows that the identification is
only partial — and we now have the discrimination, in the form of
3CPS, to separate the two forms.

The key distinction between CPS and SSA is that CPS permits
one variable to have multiple extant bindings: consider our factorial
example from Section 1, where computing the factorial of five binds
the variable n to six different values, all of which are live at the
same time.

In contrast, SSA only permits a variable to have a single value at a
time. Thus, assigning a variable in SSA overwrites its old value with
the new one. This is more limiting, but it has one distinct advantage
when performing code transforms on an IR: we can sensibly define
“domination scope” to variables, in which a variable is visible, or
can be referenced, at any control point that is dominated by the
(single) assignment to that variable.

In CPS, it can sometimes be the case that a control point 𝑢 is
dominated by some variable’s point of definition 𝑑 , yet 𝑢 is not in
the lexical scope of 𝑑 . That is, the lexical-scope visibility rule of

_-calculus is more restrictive than the dominator principle for SSA.
This is necessary to make the multiple-extant-bindings feature
of _-calculus work out property, but it can be an awkward and
annoying barrier to some desired transforms. SSA, by dispensing
with the possibility of having multiple live bindings for the same
variable, is free to use the more permissive scoping rule which
makes transforms easier for the compiler.

In 3CPS, we have a “control knob” we can use to tune the power
of environment structure, in the form of extent annotations. Thus,
we can see that “SSA is just CPS. . . restricted to register-extent
variables.” Thus SSA is typically employed only for intra-procedural
use, and the variables are taken to represent “temps” or abstract
registers, pre-register-allocation — which is exactly what a register-
extent variable is, in 3CPS.

The second major distinction between SSA and CPS (including
3CPS) is that CPS is higher-order. This exacerbates the problem of
“critical” and “abnormal” edges, and the edge-located copies that
represent 𝜙 nodes in SSA. In the parlance of control-flow graphs, a
critical edge is a control edge that goes from a split node to a join
node. It is quite challenging to implement 𝜙-function copies that
occur on critical edges; typically, these edges are split by inserting
an empty node in-between the source split node and the target
join node; 𝜙-function copies from the original edge can then be
performed here (at the cost of an extra jump instruction).

The problem with CPS is that, in principle, every call is a split
and every lambda is a join. That is, in the function call (f 3), the
value bound to f, which determines where the call is going, is a
computed value, so we cannot in general know which function is
bound to f. In fact, the variable could be bound to multiple different
functions as the program executes — perhaps f was fetched from a
hash table holding thousands of distinct procedures, all of which
are closures over different lambda terms.

The SSA community refers to computed jumps as “abnormal”
edges. However, we can tighten our abnormal split down to merely
a critical one by performing higher-order control-flow analysis to
determine the (frequently very small) set of lambdas that could flow
to the call site.

However, control-flow analysis doesn’t completely save us. Again,
a call site that could call multiple distinct functions is essentially
a split node, while a lambda that is called from multiple call sites
is essentially a join node. So we now have the possibility of a criti-
cal edge, if we call a “join” lambda from a “split” call site. Which
means there is no place to put edge code such as 𝜙-function copy
operations. We can’t even invoke the slightly heavyweight trick of
splitting the edge, in a higher-order setting: the call will be imple-
mented by jumping through a register to the target function’s code.
That code, being a join node, is also the target of other calls, which
do not do the same 𝜙-function copies.

In short, SSA is not CPS.

8 AFTER 3CPS
An IR is a way-station on the road to machine code: both a compi-
lation target and source. We’ve taken a look at some of the things
we can do while in 3CPS form. What comes after 3CPS?

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

3CPS Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

8.1 Closure allocation
Because CPS itself is already so low-level, there’s not far to go to get
from 3CPS to machine code. The one remaining task that we have
glossed over is deciding how to represent, and where to allocate,
closures. We have not said much about this, as our focus here is on
environment allocation, not value allocation. But it is not a complex
task. The closure for a lambda term is typically allocated in the
innermost frame that binds one of the lambda’s free variables. We
simply put the code pointer and lexically outer frame pointers in
this frame. We can now use the address of the field in the frame
where the code pointer is stored as the procedure; invoking the
function is an indirect jump through this pointer. This allocation
strategy aligns the liveness of the procedure with the liveness of
its dependent variables, and permits it to access the innermost
contour’s worth of these variables with a single load. (Note that
we can relocate other, outer variables to the innermost frame by
copying them with a let.)

Thus, this task is fairly straightforward.

8.2 From lambda to memory blocks
Once we’ve located all the closures in some frame, it is a very simple
task towalk the 3CPS term and translate it to a low-level formwhere
all data (including closures) is mapped down to blocks of memory,
and our vocabulary of operations is roughly machine-level. During
this translation, all heap- and stack-extent variables vanish, being
replaced by locations in heap and stack memory frames; the only
variables left are register-extent variables, which are essentially
virtual registers.

8.3 Final, low-level steps
From here, we only need to do instruction selection and register
allocation, in completely standard ways.

9 CONCLUSION
The design of the 3CPS came from work done developing higher-
order flow analyses that use control abstractions based on push-
down automata [9]. The stack-extent environment structure in
3CPS gives the “hook” needed for a summarisation-based analysis
algorithm. Once we had developed this, it was only an evolutionary
step to add register extent to provide the full spectrum of both
environment power and machine resource. (These two things are
really the same.)

This is the charm of 3CPS: we have an IR whose annotations
are defined in terms of the _-calculus-based semantics. . . but they
connect this semantics directly to the machine resources needed
to implement the program efficiently. We’ve exposed just enough
of the underlying machine pragmatics at the IR level to permit
the compiler to express a wide range of decisions about the pro-
gram’s rendering into machine code in the IR term, before we’ve
thrown away high-level information by mapping both program
environment structure and program data structure down to the
same blocks-of-memory representations.

REFERENCES
[1] Andrew W. Appel. 1992. Compiling with Continuations. Cambridge University

Press, Cambridge, England, UK.

[2] Richard A. Kelsey. 1995. A Correspondence between Continuation Passing Style
and Static Single Assignment Form. In ACM SIGPLAN Workshop on Intermediate
Representations (SIGPLAN Notices, Vol. 30, No 3), Michael Ernst (Ed.). ACM Press,
San Francisco, California, 13–22.

[3] David Kranz, Richard Kesley, Jonathan Rees, Paul Hudak, Jonathan Philbin, and
Norman Adams. 1986. ORBIT: An Optimizing Compiler for Scheme. In Proceedings
of the 1986 Symposium on Compiler Construction (SIGPLAN Notices, Vol. 21, No 7),
Stuart I. Feldman (Ed.). ACM Press, Palo Alto, California, 219–233.

[4] David A. Kranz. 1988. ORBIT: An Optimizing Compiler for Scheme. Ph.D. Disserta-
tion. Computer Science Department, Yale University, New Haven, Connecticut.
Research Report 632.

[5] Zhong Shao and Andrew W. Appel. 2000. Efficient and Safe-for-Space Closure
Conversion. ACM Transactions on Programming Languages and Systems 22, 1 (Jan.
2000), 129–161. https://doi.org/10.1145/345099.345125

[6] Olin Shivers. 1991. Control-Flow Analysis of Higher-Order Languages, or Tam-
ing Lambda. Ph.D. Dissertation. School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania. Technical Report CMU-CS-91-145.

[7] Guy L. Steele Jr. 1978. RABBIT: A Compiler for SCHEME. Master’s thesis. Artifi-
cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts. Technical report AI-TR-474.

[8] Dimitrios Vardoulakis. 2012. CFA2: Pushdown Flow Analysis for Higher-Order
Languages. Ph.D. Dissertation. Northeastern University, Boston, MA, USA.

[9] Dimitrios Vardoulakis and Olin Shivers. 2011. CFA2: A context-free approach to
control-flow analysis. Logical Methods in Computer Science 7, 2, Article 3 (May
2011), 39 pages. https://doi.org/10.2168/LMCS-7(2:3)2011 Special issue for ESOP
2010.

9

https://doi.org/10.1145/345099.345125
https://doi.org/10.2168/LMCS-7(2:3)2011

	Abstract
	1 Introduction
	2 Scope and extent
	3 The 3CPS Intermediate Representation
	4 The 3CPS machine
	4.1 Who marks the variables?

	5 When is environment structure allocated?
	6 Computational power and environment extent
	7 3CPS and SSA
	8 After 3CPS
	8.1 Closure allocation
	8.2 From lambda to memory blocks
	8.3 Final, low-level steps

	9 Conclusion
	References

