
Refining the Delta Debugging of Type Errors
Joanna Sharrad
jks31@kent.ac.uk
University of Kent

Canterbury, Kent, UK

Olaf Chitil
oc@kent.ac.uk

University of Kent
Canterbury, Kent, UK

ABSTRACT
Understanding the cause of a type error can be challenging; for
over 30 years researchers have proposed many sophisticated solu-
tions that hardly made it into practice. Previously we presented a
simple method for locating the cause of a type error in a functional
program. Our method applies Zeller’s isolating delta debugging
algorithm, using the compiler as a black box: Simple line-based pro-
gram slicing searches for a type error location. To improve speed,
we incorporated a pre-processing stage for handling parse errors.
In this paper we note that the method needs refining. We introduce
a new algorithm that replaces the previous pre-processing of parse
errors with on-request handling. We implemented the algorithm
and evaluated it for Haskell and OCaml programs to demonstrate
that it is language agnostic.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Theory of computation→ Program analysis.

KEYWORDS
Type Error, Error diagnosis, Blackbox, Delta Debugging

ACM Reference Format:
Joanna Sharrad and Olaf Chitil. 2021. Refining the Delta Debugging of Type
Errors. In IFL ’21: 33rd Symposium on Implementation and Application of
Functional Languages, September 01–03, 2021, Online. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
All programmers want fewer bugs that are easily identified and
quick to fix. However, type errors in statically typed functional
languages such as Haskell are notoriously awkward to locate. The
compiler message provides little help when it reports the type error
far from the actual ill-typed line. For example, for a program given
by Chen and Erwig in their benchmark suite [2]:

1 f x = case x of
2 0 -> [0]
3 1 -> 1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL ’21, September 01–03, 2021, Online
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the Glasgow Haskell Compiler (version 8.4.3) gives line 1 as the
error location. However, Chen and Erwig, as the oracle, a program-
mer with knowledge of where the error occurs, tell us that the error
is actually in line 2: [0] should be 0.

For over 30 years, researchers have proposed many sophisticated
solutions. Hardly any made it into practice; we believe this is be-
cause scaling these solutions to full programming languages such
as Haskell and maintaining themwith every change to the language
is too much work. Hence we started developing a simple tool that
uses the compiler as a blackbox, not duplicating any parsing or
type checking.

Our first tool [19] implements Zeller’s general isolating delta
debugging algorithm [27] for type error debugging. The algorithm
isolates a fault in a program by considering subsets of the program,
called configurations. We chose a configuration to be any subset of
the lines of the original ill-typed program. The algorithm computes
two configurations; one is a well-typed configuration that is a subset
of the other, ill-typed configuration. The difference between the
two configurations is a cause of the type error. The isolating delta
debugging algorithm starts with the empty, trivially well-typed
program and the original ill-typed program; the algorithm then
shrinks the difference between these two configurations iteratively.
In every iteration the difference between the two configurations
is halved; one half is added to the well-typed configuration, and
the other half is removed from the ill-typed one. The black-box
compiler then checks both new configurations. If one of them is
well-typed, it becomes the new, bigger, well-typed configuration;
if one of them is ill-typed, it becomes the new, smaller ill-typed
configuration.

Besides well-typed and ill-typed, the black box compiler may
also report a different error for a configuration, e.g. a parse error
or an error for using an unknown identifier. In all these cases, delta
debugging calls the configuration unresolved. If in an iteration all
modified configurations are unresolved, then the algorithm tries
further configurations by dividing the difference between the two
original configurations by 4, 8, etc. Delta debugging terminates
when it cannot reduce the difference between the two configura-
tions any further.

The more unresolved configurations the algorithm encounters,
the slower it becomes. We found that parse errors cause most un-
resolved configurations; hence we developed an algorithm termed
moiety that creates only configurations that do not cause parse
errors in the subsequently applied isolating delta debugging algo-
rithm [18]. Although the algorithm combination speeds up locating
a type error substantially, it is still too slow in practice. Moiety
sends each line of the original ill-typed program separately to the
blackbox compiler and for a typical module of 400 lines that can
take around 13 minutes.

https://orcid.org/0000-0003-2334-8862
https://orcid.org/0000-0001-7986-9929
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

IFL ’21, September 01–03, 2021, Online Sharrad and Chitil

Hence in this paper we introduce a new algorithm, good-omens,
which merges the idea of moiety into the isolating delta debugging.
The isolating delta debugging algorithm uses good-omens by request.
Suppose a split leads to a configuration yielding a parse error. In that
case, our new algorithm uses the idea of moiety to find a better split
as well as recording poor splits to avoid them in future iterations.

In this paper we make the following contributions:

• We present the good-omens algorithm for locating type er-
rors. The algorithm merges parts of the moiety algorithm
with the isolating delta debugging algorithm. (Section 3).

• We implement our new algorithm in an agnostic type er-
ror debugger named Eclectic and evaluate against our pre-
vious debugger Elucidate for run-time and result quality.
(Section 4)

• We show that our debugger is truly language agnostic by
evaluating two functional programming languages, Haskell
and OCaml. (Section 4)

2 ILLUSTRATING BY EXAMPLE
Our debugger will accept only an ill-typed program as input; so let
us consider a variant of our example from the Introduction. This
program has a single type error on line 2:

1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1) `plus` fib (n-2)

The two initial configurations for the isolating delta debugging
algorithm are as follows. Our initial well-typed configuration is
the empty program, shown on the left; the algorithm will add lines
from our ill-typed program, thus maximising the well-typed config-
uration. Our initial ill-typed configuration is the complete original
ill-typed program; the algorithm will remove lines, minimising the
ill-typed configuration. Trivially the well-typed configuration is a
subset of the ill-typed configuration.

initial well-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1) ‘plus‘ fib

(n-2)

initial ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1) `plus` fib

(n-2)

Next, the isolating delta debugging algorithm splits the difference
between the configurations in half. We remove the second half of
the difference from our ill-typed configuration and add it to our
well-typed configuration:

Iter. 1: modified well-typed
1

2

3

4

5

6 fib x = case x of
7 0 -> f x
8 1 -> f x
9 n -> fib (n-1) `plus` fib

(n-2)

Iter. 1: modified ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6

7

8

9 n -> fib (n-1) ‘plus‘ fib
(n-2)

We send both configurations to a blackbox compiler. We use only
the message returned by the compiler, which tells us whether a
configuration has a type error (fails), compiles successfully (passes),
contains a ‘Parse Error on Input’ (parseInput) or causes any other
error (unresolved). Our modified well-typed configuration on the
left is unresolved and our modified ill-typed configuration on the
right fails. Hence the modified ill-typed configuration becomes the
new, smaller, ill-typed configuration, while the (empty) well-typed
configuration remains unchanged.

Iter. 1 result: well-typed
1

2

3

4

5

Iter. 1 result: ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)

The next iteration of isolating delta debugging again creates two
modified configurations:

Iter. 2: modified well-typed
1

2

3

4 plus :: Int -> Int -> Int
5 plus = (+)

Iter. 2: modified ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4

5

The left program passes and the right one fails. Isolating delta
debugging prioritises passing, and hence the modified well-typed
configuration becomes the new, larger, well-typed configuration
while the ill-typed configuration remains unchanged.

Iter. 2 result: well-typed
1

2

3

4 plus :: Int -> Int -> Int
5 plus = (+)

Iter. 2 result: ill-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)

The next iteration of isolating delta debugging again splits the dif-
ference between the well- and ill-typed configuration and modifies
both configurations:

Refining the Delta Debugging of Type Errors IFL ’21, September 01–03, 2021, Online

Iter. 3: modified well-typed
1

2

3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)

Iter. 3: modified ill-typed
1 f x = case x of
2 0 -> [0]
3

4

5

This timewe get a ‘Parse Error on Input’ for the left configuration.
Hence the debugger calls the good-omens algorithm. The good-
omens algorithm adds back lines to the configuration with the
‘Parse Error on Input’, in this case, our well-typed configuration,
just before the line that caused the parse error. So the first iteration
of good-omens adds line 2 back to the well-typed program:

Good-omens iteration 1
1

2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)

We send this to our blackbox compiler, and again we receive a
‘Parse Error on Input’, this time for line 2. So the next iteration adds
line 1 back:

Good-omens iteration 2
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)

We receive a fail result from the blackbox compiler. The good-
omens algorithm terminates and in addition to the two configu-
rations returns the information that lines 1 to 3 form a moiety. A
moiety is a set of consecutive lines that shall not be split by isolating
delta debugging, because splitting would just cause a parse error.

Isolating delta debugging started with the assumption that lines
can be split anywhere in the configuration, that is, each line is
a separate moiety ({{1}, {2}, . . . , {9}). A call of the good-omens
algorithm refines that information for future splittings by the iso-
lating delta algorithm; here good-omens updates the moieties to
{{1, 2, 3}, {4}, {5}, . . . , {9}}.

The good-omens algorithm returns exactly the same well-typed
and ill-typed configuration as the earlier iteration 2 of isolating
delta debugging. Because lines 1 to 3 form a moiety, the difference
between the two configurations cannot be reduced further. So iso-
lating delta debugging terminates with this result: the type error
location is within the difference of the two configurations, that is,
within lines 1 to 3.

3 ECLECTIC
Eclectic is a modified version of our previous debugger, supporting
the same features [19]; however, unlike its predecessor, the new
debugger implements three core elements:

(1) The modified Isolating Delta Debugging algorithm
(2) TheGood-Omens algorithm
(3) The Agnostic behaviour
Figure 1 shows how the isolating delta debugging and good-

omens algorithms flow together. Next, a description of each aspect
and how they relate in more detail.

3.1 Delta Debugging
The delta debugging algorithm has formed the backbone of our
tools from the beginning due to its ability to mimic how program-
mers naturally debug without anything more than compiler output
[18, 19]. The process goes as such: discover a bug, modify the
source code, and recompile to see if we have achieved the desired
outcome bug-free code. Andreas Zeller automated this technique
into the Simplifying Delta Debugging algorithm [26, 27]. The al-
gorithm works by modifying source code depending on the level
of granularity. By default, granularity is set at 2, meaning the al-
gorithm divides the program in half and sends each side to a test
function. The results that this test function can provide are one of
the following Fail (×), Pass (√), and Unresolved (?).

If we receive a Fail, on either half, the algorithm calls itself
recursively whilst the granularity increases with an Unresolved. The
algorithm stops when it can no longer divide the program. However,
the Simplifying Delta Debugging algorithm can sometimes report
results larger than wanted. Zellers response to this was the Isolating
Delta Debugging algorithm which is the one we utilise within our
Eclectic tool [5, 27, 28].

Isolating delta debugging builds upon the Simplifying Delta De-
bugging algorithm by considering all outcomes of the test function.
Previously we were only really interested in Fail results to min-
imise the program down to the wrong location. We also want to
use the Pass results to provide a set of maximum faultless locations.
To do so, we will work on two copies of our program, known as
configurations.

Zeller made his algorithm abstract, which allowed for ease of
application on other domains, such as type error debugging, suc-
cessful. So in our case, the pass configuration contains a well-typed
version of our program, an empty program, and our fail configu-
ration contains the ill-typed program. The fail configuration still
employs the Simplifying Delta Debugging algorithm for us; this
means minimising the source code by removing lines. In contrast,
the pass configuration adds lines back to the empty program. Each
configuration gets sent to the test function for the result, and our
test function is a blackbox compiler. The compiler lets us know
if we have received any matches to the Fail, Pass, or Unresolved
results. For us, the new mappings of the results are Type Error (Fail)
(×), Successful Compile (Pass) (

√
), and Any other non-type error

(Unresolved) (?).
Just like the simplifying delta debugging algorithm, if the Iso-

lating delta debugging algorithm receives a Type Error (Fail) or
Successful Compile (Pass) it will continue to call itself recursively.
Otherwise, an Any other error (Unresolved) result will again increase

IFL ’21, September 01–03, 2021, Online Sharrad and Chitil

Delta
Debugging

Good-Omens

Source
Code

Blackbox
Compiler

Error Message

Result

Generate
Configuration

Generate
Configuration

Terminate
Algorithm PEOI

Continue

Terminate
Algorithm

Continue

Figure 1: The flow of the Eclectic debugger

the granularity until it is no longer viable. Once the algorithm ter-
minates, we have two configurations, one that contains only failing
lines and the other only passing.

It is the intersection of these two configurations of which gen-
erates the result of which location is ill-typed. For example, below
lines 1, 2, and 3 appear in the failing lines but not in the passing.
The intersection of the two configurations here is lines 1 to 3.

Only Failing Lines
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4

5

6

7

8

9

Only Passing Lines
1

2

3

4 plus :: Int -> Int -> Int
5 plus = (+)
6

7

8

9

3.2 Modified Isolating Delta Debugging
Delta Debugging is easily applied to the domain of type error de-
bugging. However, to integrate the good-omens algorithm, some
modifications had to be applied. Algorithm 1 shows an outline of
the new modified Isolating delta debugging algorithm, again using
pseudocode and concentrating on a subset of the algorithm that
applies the choices. The changes have been highlighted.

ALGORITHM 1: Changes to Delta Debugging for Good-Omens

while j < n: do
i = (j + offset) % n
next_c_pass = listunion(c_pass, deltas[i])
next_c_fail = listminus(c_fail, deltas[i])

if test(next_c_fail) == ParseInput or test(next_c_pass) == ParseInput:
good-omens(next_c_fail, next_c_pass, moieties)

else if test(next_c_fail) == FAIL and n == 2:
c_fail = next_c_fail
n = 2; offset = 0; break

else if test(next_c_fail) == PASS:
c_pass = next_c_fail
n = 2; offset = 0; break

else if test(next_c_pass) == FAIL:
c_fail = next_c_pass
n = 2; offset = 0; break

else if test(next_c_fail) == FAIL:
c_fail = next_c_fail
n = max(n - 1, 2); offset = i; break

else if test(next_c_pass) == PASS:
c_pass = next_c_pass
n = max(n - 1, 2); offset = i; break

else
j = j + 1 # Try next subset

end if
end while

Refining the Delta Debugging of Type Errors IFL ’21, September 01–03, 2021, Online

Here we have added an additional clause that detects for ’parse
error on input’ results. This means that our mapped results from
the blackbox compiler now look like the following Type Error (Fail),
Successful Compile (Pass), Any other non-type error (Unresolved),
and Parse error on input (ParseInput).

These new results are applied as follows; first, we send our ill-
typed program to the Isolating delta debugging algorithm. At this
stage, it works as previously described, creating two configura-
tions, one that is empty and one that is the entire ill-typed pro-
gram. It recursively modifies each configuration with either more or
fewer lines, requesting the results of the changes from the blackbox
compiler until we receive a ‘ParseInput’ result. We then call the
good-omens algorithm with the current configurations. Once the
good-omens algorithm terminates, it returns a set of valid and in-
valid splitting points, or moieties, for the ill-typed programs source
code and the Isolating delta debugging algorithm starts again from
its last position. However, this time when dividing the configura-
tions, it uses the valid splitting points for guidance. The Isolating
delta debugging algorithm then recursively calls itself again until it
either terminates or receives another ‘ParseInput’ result.

3.3 Good-Omens Algorithm
In a previous paper, we introduced the algorithm Moiety [18]. The
algorithmworks by pre-processing each line of an ill-typed program
before reaching the Isolating delta debugging algorithm. The design
of this pre-processing is to eliminate all ‘Parse Errors on Input’ by
generating moieties, also described as sets of line numbers that are
valid splitting points in the program. For the debugger, Eclectic,
we modified the moiety algorithm to become the on-request good-
omen algorithm seen in algorithm 2. The debugger no longer needed
to check each line for a ‘Parse Error on Input’; however still needs
to generate sets of moieties, this time representing both valid and
invalid splitting points.

ALGORITHM 2: The Good-Omens Algorithm

while l ! = n: do
l = l - 1 # Add prior line to current line
if test(next_c_fail) == FAIL:

join current line to prior line in moieties list
deltaDebugging(moietyList)

else if test(next_c_fail) == PASS:
join current line to prior line in moieties list
deltaDebugging(moietyList)

else if test(next_c_pass) == UNRESOLVED:
join current line to prior line in moieties list
deltaDebugging(moietyList)

else
l = l - 1 # ParseInput result - Try next line

end if
end while

Section 2 ran though a full example of the Eclectic tool. Here
an example will just show how the good-omens algorithm works.
Recollect that the example program caused Isolating delta debug-
ging to call the good-omens algorithm at this point. The ill-typed
configuration is on the left and the well-typed on the right:

Step 1: ill-typed
1 f x = case x of
2 0 -> [0]
3

4

5

6

7

8

9

Step 1: well-typed
1

2

3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6

7

8

9

The cause of the ‘Parse Error on Input’ on the right configuration
is currently the invalid split between lines 3 and 2. The isolating
delta debugging provides the good-omens algorithm with both of
the above configurations. It also provides the current set of moieties.
In the case of the example, this is:

{{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}},
there are no invalid splitting points.
Just as isolating delta debugging does, good-omens works on

both configurations, however only the one that contains the ‘Parse
Error on Input’ is sent to the blackbox compiler to check for a new
result. Each time the debugger calls the good-omens algorithm,
it works on the current configuration using the ‘ParseInput’ line
number for guidance. The good-omens algorithm generates a new
configuration by moving the next line before line 3 from left-hand
configuration to the right:

Step 2: ill-typed
1 f x = case x of
2

3

4

5

6

7

8

9

Step 2: well-typed
1

2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6

7

8

9

The good-omens algorithm completes this process, and the al-
gorithm calls the blackbox compiler with the new configuration.
The results show the configuration still has a ‘Parse Error on Input’.
This time the issue is between lines 2 and 1. Again the good-omens
algorithm produces a new configuration:

Step 3: ill-typed
1

2

3

4

5

6

7

8

9

Step 3: well-typed
1 f x = case x of
2 0 -> [0]
3 1 -> 1
4 plus :: Int -> Int -> Int
5 plus = (+)
6

7

8

9

IFL ’21, September 01–03, 2021, Online Sharrad and Chitil

Good-omens again calls the blackbox compiler and receives a
Fail result. The algorithm has removed the ‘Parse Error on Input’,
and the set of moieties looks like this:

{{1, 2, 3}, {4}, {5}, {6}, {7}, {8}, {9}}
The algorithm now returns the moieties list to the Isolating delta

debugging algorithm.

3.4 Agnostic Debugging with a blackbox
compiler

We explained earlier that delta debugging requires a test func-
tion; ours is a blackbox compiler. A blackbox compiler is accessed
externally; only our tool and algorithms have no connection or
knowledge of the internal components. Similar to delta debugging,
employing a blackbox compiler is a direct mapping of the natu-
ral debugging technique. The programmer only has access to the
compilers error message, and so do we.

From the error message, we get all the information needed to
apply our result descriptions (Fail, Pass, Unresolved, ParseInput)
which the algorithms use to decide which path to take. In the case
of Isolating delta debugging, this is how it will next split up the two
configurations or if it needs to call the good-omens algorithm. In
contrast, the good-omens algorithm uses it to check if the genera-
tion of our splitting points, moieties, are valid or not.

The compiler we use as a blackbox for our primary evaluation
of our tool is the Glasgow Haskell Compiler (GHC). However, as
all we are using the compiler for is the error message, we have
the benefit of being able to keep our tool separate. Disjointing our
tool and algorithms from the compiler of a language allows it to
be agnostic. An agnostic debugger’s benefit is the ability to have
only one debugger for many languages. We see this in our agnostic
evaluation, where we will use Ocamlc and GHC as our blackbox
compilers.

We propose that an agnostic debugging tool has the following
trait no awareness of language-specific details or syntax within its
source code. However, there are certain aspects within this trait
our tool might need to know when debugging. Our solution is to
provide the tool with external setting files to capture a particular
programming language’s nuances.

This style of agnostic behaviour, using external sources, is sim-
ilar to software that uses languages settings. The software itself
does not contain over 7000 different languages but instead relies
on placeholders that call the correct languages from an external
language file similar to this short example:

putStrLn langHelp

Listing 1: Software using language translation

langHelp = "Help"

Listing 2: External Language File - English

langHelp = "Hilfe"

Listing 3: External Language File - German

Applying this style of language setting behaviour to type error
debugging solutions compliments the reasoning for using a blackbox
compiler. Not only do users of the solution avoid any modification
to the compiler, but it also allows for ease of introducing new or
updated programming languages without making any changes to
the solution.

The example above shows how some software treats multiple
spoken languages, using placeholders within the source code that
match a terminal within a “language configuration”. When finding
a match, the contents of the terminal replaces the placeholder. The
agnostic type error debugger in this chapter will do the same for
programming language-specific terminology. When using the “lan-
guage configurations” style, each spoken language has a separate
“settings file”, with the correct language recognised by a setting
within the program itself. The agnostic type error debugger also
uses separate files for each programming language. However, modi-
fying the debugger every time a new programming language needs
debugging goes against the core agnostic trait. As such, the type
error debugger also pattern matches the “settings file”. For the
matching of the programming language to “settings file” to occur,
the debugger needs one argument, that of the command for compil-
ing a program in the users chosen programming language or build
tool. For instance,

agnosticDebugger ghc -o myProgram myProgram.hs
agnosticDebugger cabal build myProgram.hs
agnosticDebugger ocamlc -o myProgram myProgram.ml

Would match the first run of the debugger, “agnosticDebugger”,
with the “settings file” for the Glasgow Haskell Compiler, and the
second with the “settings file” for Cabal, and lastly with the “set-
tings file” of OCamlc. Whatever the first argument for the agnostic
debugger is will be the “settings file” that is invoked, whilst all
the arguments after the first are used as standard, meaning the
programmer can use any flags or program names they wish.

Now that the type error debugger knows what “settings file”, and
thus what programming language it will use, the substitution can
happen. In figure 2 the full “settings files” for GHC are presented.

There are several exceptions that the type error debugger needs
to not remove from the generated configurations to reduce blackbox
compiler calls and to allow for substitution; these exceptions need
to be listed in the “settings file”. In figure 2, there are two sections,
one for singular lines, in section ###EXCEPTIONS###, and one for
multi-line, in section ###MULTI_EXCEPTIONS###, with commas sep-
arate both sets. However, those with multi-lines are placed within
braces, so the type error debugger knows when these begin and
end. However, exceptions are not the only pieces of information an
agnostic solution needs to recognise. Recall that the blackbox com-
piler returns a result that is categorised by the type error debugger.
Two of those categories are Fail, the configuration contains a type
error, and ParseInput, the configuration contains a ‘Parse Error on
Input’. The previous type error debuggers used key terms from the
output of the compilers error message to categorise the configura-
tions correctly. Thus, knowledge of if the error contains the terms
type error or parse is error is necessary. Unfortunately, there is no
way to “discover” the substitutions for a programming language,
nor are they the same for all statically typed function languages, so

Refining the Delta Debugging of Type Errors IFL ’21, September 01–03, 2021, Online

###FILE_TYPE### -
hs

###TYPE_ERRORS### -
type, type , type:, type-variable

###TYPE_IGNORE### -
parse error, type signature, type constructor

###PARSE_ERRORS### -
parse error on input

###PARSE_IGNORE### -

###EXCEPTIONS### -
--,import

###MULTI_EXCEPTIONS### -
({-;-})

Figure 2: GHC Settings

again, these need to appear in the “settings file” as seen in figure 2
under sections ###TYPE_ERRORS### and ###PARSE_ERRORS###.

4 EVALUATION
In Section 2, our newmethod is presented, making our pre-processing
algorithm work on a request only basis. We hypothesise that by
combining isolating delta debugging and moiety algorithms, we
should see a reduction in the time taken to locate type errors.

To show that our hypothesis is correct, we need to evaluate our
method on a large data-set of ill-typed programs. In a previous paper,
we designed one such data-set based on the real-world program
Pandoc1 [17, 18]. This ’scalability data-set’ contains 80 modules
of Pandoc, each with a manually inserted singular type error. The
modules range in size from 32 to 2305 lines of code, giving us a
good overview of how our tool effects programs of different sizes.
We compare the results of this evaluation against our previous
debugger, Elucidate, whose results have also been re-captured on
a PC running Ubuntu Linux 20.04 with an AMD Ryzen 7 3800X,
32GB RAM and a Samsung 850 SSD.

4.1 Reduction of time
Question: Can combining the isolating delta debugging, and moiety
algorithms speed up the time taken to locate type errors?

Let us look at Figure 3. Along the x-axis are our 80 modules from
the scalability data-set, and the y-axis represents the time taken in
seconds. To make the graph easier to read, we have omitted two
tests and have placed them in the separate Figure 4, for Elucidate
only, tests 79 at 2532 seconds(42 minutes 12 seconds) and test 80 at
2496 seconds (41 minutes 36 seconds).

Overall our new combined algorithms have significantly reduced
the time taken to locate type errors. On average, we reduced the run-
time by 1 minute 37 seconds. However, the most drastic differences

1Pandoc is a popular Haskell library for markup conversion.

are in our modules with over 200 lines. The most impressive was
modules 79 and 80, which took over 40 minutes to return their
results using our new method; both reduced by over 38 minutes
(2310 seconds).

Unfortunately, not all of the tests successfully reduced the time
taken. One such example is module 38, shown in more detail in
Figure 5, which had the worse time increase at 482 seconds (8 min-
utes 2 seconds) over Elucidate. These increases on only some of the
results are understandable. It is easy to assume that a reduction of
time occurs because the debugger is no longer pre-processing entire
programs linearly. However, this assumption excludes that applying
the pre-processing algorithm, Moiety, compared to the ‘on request’
algorithm, Good-Omens, can cause isolating delta debugging to
generate the configurations differently. Having the isolating delta
debugging algorithm traversing different paths can increase the
overall number of the results, particularly Unresolved outcomes.
Each extra result is an additional call to the blackbox compiler,
which raises the run-time. Figure 6 shows this increase in run-time
and calls to the blackbox compiler, the category of the compiler
results is on the x-axis, and the number of times each result is
received on the y-axis. Here, Eclectic, on all result categories, has
increase calls. This increase in compiler calls corresponds to all 21
out of 80 modules, which increased this evaluation’s run-time.

As mentioned, we see that the addition of Unresolved and ’Parse
Errors on Input’ outcomes increases the time taken for the debugger.
We currently have no way of predicting those outcomes before the
debugger runs, especially agnostically.

Figure 6: An increase of compiler calls leads to an increase
of run-time

4.2 The quality of the debugger
In the previous section, we showed that our method successfully
reduced the time taken to locate type errors. However, it is essential
to show that a type error debugging tool has overall quality. In a
previous paper, we introduced a framework to quantify the quality

IFL ’21, September 01–03, 2021, Online Sharrad and Chitil

Figure 3: Elucidate and Eclectic - Run Time

Figure 4: Programs 79-80

Figure 5: Program 38

of a debugger, and here we apply that framework to our tool [18].
The framework consists of four sections Accuracy, Recall, Precision
and the 𝐹1 Score. Commonly in type error debugging evaluations
use recall only, the number of successful tests. However, it is also
helpful to apply the other three sections to give a more rounded
evaluation. Accuracy shows us the number of type error locations
we correctly returned compared to those incorrectly returned. Pre-
cision tells us how many of the lines we have returned are correct,
and the 𝐹1 Score is the harmonic mean between recall and precision.

Metric Elucidate Eclectic
Accuracy 88% 83%
Recall 59% 79%

Precision 14% 11%
𝐹1 Score 19% 18%

Table 1: Framework Results - Average for the reduction of
time evaluation

Table 1 shows the results of applying the framework to Eclectic.
Here, along with Figure 7, the recall metric shows that the debugger
increases from 59% to 79% on the number of correct locations;
Eclectic located 63 out of 80 errors compared to Elucidate at 47. If
the evaluation just used this metric, the new debugger would look
significantly better on results and time reduction.

However, I want to provide a more authentic depiction of the
debuggers. Unfortunately, that does not put Eclectic in a good light.
Accuracy, precision, and 𝐹1 Score are lower than the previous de-
bugger. The lower than expected results are due to an increase
in the returned line locations in 35 out of the 80 tests that con-
tained a larger number of incorrect results. Module 70 contains
an example of this. Elucidate returns the correct answer with one

Refining the Delta Debugging of Type Errors IFL ’21, September 01–03, 2021, Online

Figure 7: Recall data shows that the new debugger, Eclectic, locates
16 more type errors correctly, than the previous debugger Elucidate

reported line, while Eclectic does this in four lines. The reason for
this discrepancy is the implementation of the good-omens algo-
rithm. Currently, when calling the algorithm, an additional branch
is generated. This branch is useful as it allows for more than one
type error to be discovered, as seen in module 70’s results. Elucidate
returns only line 265, which in itself is a one-line function. However,
Eclectic returns a three-line function {49,50,51} and the single
line function at {265}. The need to discover more than one type
error is subject to opinion and future work will see if this feature
is more of a hindrance than a help. However, in some cases, the
evaluation does get the opposite effect. When looking at module 77,
Elucidate returns 28 results, each a different line number, and all 28
are incorrect. On the same module, Eclectic returns fewer results
at two line numbers and gets the correct location of the type error.

Though these extra line results do not affect the core goal of
reducing the debuggers time-taken, it reduces their quality. Further
investigation is needed to iron out this problem.

4.3 Agnostic Debugging
As mentioned in Section 3.4, the Eclectic debugger and its algo-
rithms are agnostic; its application can span multiple programming
languages. To show that this agnostic behaviour works, we have
evaluated our debugger on an additional statically typed language
OCaml.

We converted 11 ill-typed Haskell programs from a set collated
by Chen and Erwig [2] to OCaml. We used these benchmarks to see
if we could successfully apply our debugger to another language. A
successful application would show promising results for type error
discovery in the new language.

Table 2 shows the debugger’s results to both the Haskell and
OCaml source code. For Haskell, we used the Glasgow Haskell
Compiler as our blackbox, and for OCaml, the blackbox is OCamlc.

Metric Haskell OCaml
Accuracy 37% 49%
Recall 73% 73%

Precision 34% 64%
𝐹1 Score 44% 68%

Table 2: Framework - Average for the agnostic evaluation

For recall, the number of times the debugger correctly reported
the line the error occurs on, and we see the debugger has identical
results for 8 out of the 11 benchmarks. However, this is where the
similarities stop. We see in Table 2 that for Accuracy, Precision, and
𝐹1 Score, the OCaml language’s results are more beneficial. The
results outcome is due to the debugger not calling the good-omens
algorithm. The lack of calls to the algorithm with OCaml happens
because it does not have an equivalent to Haskells ’Parse Error on
Input’2. Unfortunately, as shown our previous paper, the absence of
an algorithm to remove these errors stunts the debugger’s ability to
scale to more extensive programs [18, 19]. More research is needed
to see if OCamls lack of a ’Parse Error on Input’ category would
hinder the agnostic debuggers scalability when applied to other
programming languages. However, the results do not affect the
outcome that the debugger is proven to be wholly agnostic.

2To the best of the author’s knowledge.

IFL ’21, September 01–03, 2021, Online Sharrad and Chitil

4.4 Summary
The evaluation proved that our new algorithms successfully locate
type errors within our tool in a timely fashion on average. In the
most favourable result, Eclectic reduced the time taken by over
38 minutes. We also managed to discover more correct locations
of type errors with Eclectic than with Elucidate, as seen with our
recall metric. However, when we gathered a more detailed look at
our tool, it was clear to see that we struggled with a lower 𝐹1 Score.
Our short evaluation of agnostic debugging was a success, with
evidence that there is a possibility of type error debuggers being
agnostic in the future. Altogether, we have succeeded in reducing
the tools time on average to locate type errors and shown that
agnosticism works. However, we have also encountered further
work within accuracy and precision, proving the necessity of a type
error debugging tool framework.

5 RELATEDWORK
Type error debugging research has a vast history which covers
a variety of solutions over a span of thirty-plus years [1, 3, 4, 6,
10, 13, 15, 16, 20, 21, 23–25, 29]. However, these solutions tended
to need either a modified compiler or patch. All of our tools, on
which we have based this current work, use agnostic algorithms
and a blackbox compiler and so bucked this trend [18, 19]. The core
agnostic algorithm we have continued to use is Delta Debugging
[5, 26–28]. The Delta Debugging algorithm automates the way pro-
grammers debug their software. The algorithm initially worked on
a single configuration, faulty program; this version is the Simpli-
fying Delta Debugging algorithm. However, it was not long until,
Zeller the designer of Delta Debugging, released an improved ver-
sion that worked on two configurations, isolating delta debugging
algorithm. It is the isolating delta debugging algorithm of which our
work uses. A core part of Delta Debugging is the necessity of a test
function. This test function can be anything that produces results
that can guide the algorithms path. In our case, we use a blackbox
compiler, specifically the Glasgow Haskell Compiler (GHC). For
us, a blackbox compiler is a compiler used the same way as a pro-
grammer does for accessing error messages. Unlike other solutions
that suggest using a compiler as a blackbox, we do not need to
apply any modifications allowing us to be a completely separate
entity [8, 9, 12, 22]. Though we successfully combined isolating
delta debugging algorithm and a blackbox compiler to locate type
errors with a rate of 27 percentage points over GHC we found that
our debugger would have issues scaling to larger programs [18].
Our answer was to look at the input given to the isolating delta
debugging algorithm, as a configuration, before running. Though
we were not the first to look in this direction, we were the first to
do so with a pre-processing algorithm for type errors [7, 11, 14].

6 CONCLUSION AND FUTUREWORK
We presented our method of combining a modified isolating delta de-
bugging algorithm, the moiety algorithm, a blackbox compiler, and
the good-omens algorithm to locate type errors. Though successful
in locating type errors, our previous tool had too low run-times
[18]. Our new agnostic tool, Eclectic, addresses this problem of
speed. Taking the strengths of both the isolating delta debugging
and moiety algorithms, we united them with our new good-omens

algorithm. Previously the self-contained moiety algorithm acted
as a pre-processor for isolating delta debugging. Moiety generated
’parse error on input’-free configurations for the isolating delta
debugging algorithm. These configurations allowed isolating delta
debugging to know valid splitting points, locations that are available
to be split without introducing an error. However, pre-processing
came with a price: each line had to be type-checked against the
compiler, leading to linear run-time. In contrast, Eclectic allows the
isolating delta debugging algorithm to request valid splitting points
only when it observes a ’parse error on input’. This change gives
us an average reduction in the run-time of 1 minute 37 seconds.

Unfortunately, using a previously presented framework to quan-
tify the quality of a type error debugger, the changes that made
this significant difference in time slightly reduced the debugger
quality overall compared to our previous implementation [18]. In
recall, the most commonly used metric in type error debugging, we
gain a positive 20% accurate locating of type errors on our previous
debugger. However, the overall outcome of the tool shown by the
𝐹1 Score returned 1% fewer. The explanation for this discrepancy
is that the type error locations contain more lines of code than
previously. Thirty-five of the eighty tests yielded larger locations,
averaging ten lines more than Elucidate due to the algorithm’s im-
plementation. The current implementation allows for branches of
the algorithm to find more than one type error in the code; however,
we need to investigate if this is a beneficial aspect.

Along with the successful reduction of time, we also provide a
short evaluation of the debuggers agnostic behaviour. This evalua-
tion showed that we could apply our debugger and its algorithms
to more than one programming language. However, though we
received good results, we would like to complete a more in-depth
investigation of agnostic debugging, with more extensive evalua-
tions and a more comprehensive range of languages tested.

Concerning future work, we will first be looking into reducing
these larger locations. We will not be able to reduce many to one
location due to the moieties job of not allowing non-valid split-
ting points. However, we can investigate how the isolating delta
debugging algorithm’s differing chosen path causes this disparity
and removes the ability to discover more than one type error at a
time. Also, the tool works best for larger programs, with those at
the shorter end not benefiting in reducing time. For this, we will
be looking at heuristics to decide if to call the pre-processing or
’on request’ algorithm. One such solution would resort back to the
pre-processing Moiety algorithm if the programs source code is
under a specific size.

Lastly, we would like to implement an empirical study using real
programmers on the debuggers’ ability to locate type errors and its
agnostic features.

REFERENCES
[1] Karen L Bernstein and Eugene W Stark. 1995. Debugging type errors. Technical

Report.
[2] Sheng Chen and Martin Erwig. 2014. Counter-factual typing for debugging type

errors. In POPL 2014. ACM, 583–594.
[3] Sheng Chen and Martin Erwig. 2014. Guided Type Debugging. In Functional and

Logic Programming - 12th International Symposium. 35–51.
[4] Olaf Chitil. 2001. Compositional Explanation of Types and Algorithmic Debug-

ging of Type Errors. In ICFP 2001. 193–204.
[5] Holger Cleve and Andreas Zeller. 2005. Locating causes of program failures. In

27th International Conference on Software Engineering. 342–351.

Refining the Delta Debugging of Type Errors IFL ’21, September 01–03, 2021, Online

[6] Christian Haack and Joe B. Wells. 2004. Type error slicing in implicitly typed
higher-order languages. Sci. Comput. Program. 50, 1-3 (2004), 189–224.

[7] Christian Gram Kalhauge and Jens Palsberg. 2019. Binary Reduction of Depen-
dency Graphs. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 556–566.

[8] Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Chambers. 2007.
Searching for type-error messages. In Proceedings of the ACM SIGPLAN 2007
Conference on Programming Language Design and Implementation, San Diego,
California, USA, June 10-13, 2007. 425–434. https://doi.org/10.1145/1250734.
1250783

[9] Benjamin S. Lerner, DanGrossman, andCraig Chambers. 2006. Seminal: searching
for ML type-error messages. In Proceedings of the ACM Workshop on ML. 63–73.

[10] Bruce J McAdam. 1999. On the unification of substitutions in type inference.
Lecture notes in computer science 1595 (1999), 137–152.

[11] Ghassan Misherghi and Zhendong Su. 2006. HDD: Hierarchical Delta Debugging.
In ICSE ’06. ACM, 142–151.

[12] Zvonimir Pavlinovic. 2014. General Type Error Diagnostics UsingMaxSMT. https:
//pdfs.semanticscholar.org/1c14/7bc9f51cc950596dbc3e7cc5121202d160da.pdf

[13] Vincent Rahli, Joe B. Wells, John Pirie, and Fairouz Kamareddine. 2015. Skalpel:
A Type Error Slicer for Standard ML. Electr. Notes Theor. Comput. Sci. 312 (2015),
197–213.

[14] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case Reduction for C Compiler Bugs. In PLDI 2012 (Beijing,
China). ACM, 335–346.

[15] Thomas Schilling. 2011. Constraint-Free Type Error Slicing. In Trends in Func-
tional Programming, 12th International Symposium. 1–16.

[16] Eric L. Seidel, Ranjit Jhala, and Westley Weimer. 2016. Dynamic witnesses for
static type errors (or, ill-typed programs usually go wrong). In ICFP 2016. ACM,
228–242.

[17] Joanna Sharrad. 2021. Pandoc for evaluation of type error debug-
gers. Retrieved March 1, 2021 from https://github.com/JoannaSharrad/

TypeErrorDebuggingScalabilityDataSet
[18] Joanna Sharrad and Olaf Chitil. 2020. Scaling Up Delta Debugging of Type Errors.

In Trends in Functional Programming: 21st International Symposium, TFP 2020,
Krakow, Poland,. Springer.

[19] Joanna Sharrad, Olaf Chitil, and Meng Wang. 2018. Delta Debugging Type Errors
with a Blackbox Compiler. In IFL 2018 (Lowell, MA, USA). ACM, 13–24.

[20] Peter J. Stuckey, Martin Sulzmann, and Jeremy Wazny. 2003. Interactive type
debugging in Haskell. In Proceedings of the ACM SIGPLAN Workshop on Haskell.
72–83.

[21] Frank Tip and T. B. Dinesh. 2001. A slicing-based approach for locating type
errors. ACM Trans. Softw. Eng. Methodol. 10, 1 (2001), 5–55.

[22] Kanae Tsushima and Kenichi Asai. 2012. An Embedded Type Debugger. In IFL
2012. 190–206.

[23] Kanae Tsushima and Olaf Chitil. 2014. Enumerating Counter-Factual Type Error
Messages with an Existing Type Checker. In PPL2014.

[24] Kanae Tsushima, Olaf Chitil, and Joanna Sharrad. 2020. Type Debugging with
Counter-Factual Type Error Messages Using an Existing Type Checker. In IFL
2019: Proceedings of the 31st Symposium on Implementation and Application of
Functional Languages. ACM.

[25] Mitchell Wand. 1986. Finding the Source of Type Errors. In POPL 1986. ACM,
38–43.

[26] Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does Not. Why?.
In Software Engineering - ESEC/FSE’99, 7th European Software Engineering Confer-
ence. 253–267.

[27] Andreas Zeller. 2009. Why Programs Fail Guide to Systematic Debugging, 2nd
Edition. Academic Press.

[28] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Software Eng. 28, 2 (2002), 183–200.

[29] Danfeng Zhang, Andrew C. Myers, Dimitrios Vytiniotis, and Simon L. Peyton
Jones. 2015. Diagnosing type errors with class. In PLDI 2015. ACM, 12–21.

https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/1250734.1250783
https://pdfs.semanticscholar.org/1c14/7bc9f51cc950596dbc3e7cc5121202d160da.pdf
https://pdfs.semanticscholar.org/1c14/7bc9f51cc950596dbc3e7cc5121202d160da.pdf
https://github.com/JoannaSharrad/TypeErrorDebuggingScalabilityDataSet
https://github.com/JoannaSharrad/TypeErrorDebuggingScalabilityDataSet

	Abstract
	1 Introduction
	2 Illustrating by example
	3 Eclectic
	3.1 Delta Debugging
	3.2 Modified Isolating Delta Debugging
	3.3 Good-Omens Algorithm
	3.4 Agnostic Debugging with a blackbox compiler

	4 Evaluation
	4.1 Reduction of time
	4.2 The quality of the debugger
	4.3 Agnostic Debugging
	4.4 Summary

	5 Related Work
	6 Conclusion and Future Work
	References

