
In-Place-Folding of Non-Scalar Hyper-Planes of
Multi-Dimensional Arrays

Gijs van Cuyck
gijs.vancuyck@ru.nl
Radboud University

Nijmegen, Netherlands

Sven-Bodo Scholz
SvenBodo.Scholz@ru.nl
Radboud University

Nijmegen, Netherlands

ABSTRACT
Memory management plays a key role when trying to compile func-
tional programs into efficiently executable code. In particular when
using flat representations for multi-dimensional arrays, I.E., when
using a single memory block for any multi-dimensional array, in-
place updates become crucial for highly competitive performance.

This paper proposes a novel code generation technique for per-
forming fold-operations on hyper-planes of multi-dimensional ar-
rays, where the fold-operation itself operates on non-scalar sub-
arrays. This technique allows for a single result array allocation
over the entire folding operation without requiring the folding op-
eration itself to be scalarised. It enables the utilisation of vector
operations without any added memory allocation or copying over-
head. We describe our technique in the context of SaC, sketch our
implementation in the context of the compiler sac2c and provide
some initial performance measurements that give an indication of
the effectiveness of this new technique.

ACM Reference Format:
Gijs van Cuyck and Sven-Bodo Scholz. 2021. In-Place-Folding of Non-Scalar
Hyper-Planes of Multi-Dimensional Arrays. In Proceedings of IFL 21: ACM
Symposium on implementation and application of functional languages (IFL
21). ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
High-Level array languages such as Futhark[13], Accelerate[5],
Lift[20], Halide[17], or SaC[18] have demonstrated that it is possi-
ble to generate very efficient parallel codes from abstract problem
specifications. This resonates very well with the functional credo
of the “what not how” and it opens up competitive parallel perfor-
mance to domain experts without requiring them to become HPC
experts.While it has been shown across many different projects that
this goal can be reached in principle, we are still far from having
techniques that can cope with all possible high-level expressions
equally well, let alone having a single tool chain that comprises all
known techniques. In particular when applying the array approach
to new application areas, we typically identify new code patterns

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL 21, September 01–03, 2021, Online
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

that are not yet covered well enough to allow the programmer to
solely concentrate on the “what”.

This paper focuses on one particular constellation which appears
frequently in applications that naturally lend themselves to algorith-
mic descriptions on higher-dimensional arrays (dimensionality ≫
3) such as for example CNNs (Convolutional Neural Networks)[25].
More specifically, it deals with fold-operations that fold away one
or more dimensions of a higher-dimensional array that comprise
neither the innermost nor the outermost one. The challenge here
is memory management. In order to avoid excessive memory al-
locations or copying, we need to perform the reduction operation
in-place on the result array. Given the folding arguments are entire
sub-arrays this poses a challenge. One way to avoid this problem
is to re-write the computation into a semantically equivalent one
that performs the folding-operation on the innermost dimension(s).
This re-write can even be automated by using optimisations such
asWith-Loop-Scalarization [11]. Unfortunately, such a re-write (i)
is not always possible and (ii) it is not always desirable as it may
inhibit the use of vector operations.

In this paper, we propose a code generation technique that allows
such reductions on entire sub-arrays to be performed in place. It
constitutes a novel extension of the code generation techniques that
have been developed in the context of SaC [12]. Our contributions
are:

• a clear identification of the code pattern that poses the mem-
ory management challenge

• an analysis how this challenge can be met in the context of
flat array representations

• a code generation scheme that enables in-place reductions
on non-scalar hyper-planes

Section 2 gives a short overview of the SaC language and some
of its relevant features, section 3 provides a detailed account of the
problem the new code generation technique will resolve. Section 4
briefly explains the pre-existing code generation before section 5 re-
lates this to the problem at hand. Section 6 then proposes a solution
in the form of the "’in-place accumulator optimisation"‘, a modifi-
cation of the code generation process. We quantify the effect of our
optimisation in section 7 where we discusses the results of several
benchmark comparisons between optimised and non-optimised
code. Sections 8 and 9 then discuss related work and summarise
the drawn conclusions respectively.

2 SAC
TBD...

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

IFL 21, September 01–03, 2021, Online Gijs van Cuyck and Sven-Bodo Scholz

3 PROBLEM STATEMENT
As stated previously, SaC is a declarative language. This means that
it should not matter how a programmer writes down a program,
in terms of efficiency. As stated earlier in section 1 however, the
performance of nested fold withloops often lags behind equiva-
lent programs without fold loops. Using the SaCmini formalism
introduced in ??, this performance discrepancy can be exposed.
An example of how the same program can be written down in
different ways can be seen in figure 1. The figure shows three
ways in which an existing 2-dimensional array can be updated by
adding several rows together. Each of the three programs calcu-
lates the same result 𝑟𝑒𝑠 from input 𝑎, with the following property:
𝑟𝑒𝑠 [𝑖, 𝑗] = 𝑎[𝑖, 𝑗] +𝑎[𝑖 + 1, 𝑗] +𝑎[𝑖 + 2, 𝑗]. For the last three elements
of 𝑟𝑒𝑠 where this calculation would fall outside the bounds of 𝑎, the
result is 0 instead. Figure 1a takes the straightforward approach and
just adds the individual elements together. Figure 1b Uses a more
array based approach and adds entire rows at a time. Both of these
options work fine for smaller cases, but if for instance a hundred
rows need to be added the code becomes hard to read and maintain.
The third option shown in figure 1c does not have this problem. It
uses a fold withloop to calculate the same result as the first two
options. The +3 on line 5 shows that currently three rows are be-
ing added, just like in the other options. However, to increase the
number of rows here to a hundred, the +3 can simply be replaced
by +100, as long as the bound of the outer withloop (800000 − 3)
is also adjusted accordingly. For the first two options, this change
would require adding more rows to the explicit addition. For adding
a small number of rows though, one of the first two options might
be preferable because it is less verbose. The programmer should be
free to pick the most readable option for the current situation, with-
out worrying about performance. Actually measuring the runtime
of executing the three options tells a different story though. The
first two are roughly equivalent, but the fold version is significantly
slower. One possible cause for this is that the fold version does one
addition more than the other versions. I.e., it calculates 0 +𝑎[𝑖] + ...,
while the others only calculate 𝑎[𝑖] + To compensate for this,
both the first two versions are changed slightly to add this extra
+0 to their calculations as well. The results of this testing can be
seen in figure 2. This figure was obtained by executing a program
that calls one of the three rowadd functions exactly once. To com-
pensate for random background noise, each function was executed
100 times. To remove some outliers, the figure shows the 95 results
closest to the mean for each function. As expected the V1 and V2
versions perform roughly equivalently with an average runtime of
5.8 seconds. The V3 version is however noticeably slower with an
average runtime of 6.3 seconds. This means that the V3 version is
around 10% slower than the other two versions.

Figure 1c is a specific example of the larger pattern of using a
fold operation to produce a non-scalar result, and then combining
multiple of these results together in an array. This specific example
could be improved by unrolling the loop, because the total number
of iterations is low. This is not always possible however. The goal of
this paper is to solve the general problem of the slowdown observed
in nested fold withloops. To do this, the example of figure 1c will
be analysed in more detail. In order to better understand why this

1 int[800000,1000] rowadd_V1(int[800000,1000] a)
2 {
3 res = with {
4 ([0,0] <= [i,j] < shape(a) - [3,0]) :
5 a[i,j]+ a[i+1,j]+a[i+2,j];
6 } : genarray([800000,1000],0);
7 return res;
8 }

(a) Adding rows by adding individual elements

1 int[800000,1000] rowadd_V2(int[800000,1000] a)
2 {
3 res = with {
4 ([0] <= [i] < [800000-3]) :
5 a[i]+ a[i+1]+a[i+2];
6 } : genarray([800000],genarray([1000],0));
7 return res;
8 }

(b) Adding rows by adding whole rows at a time

1 int[800000,1000] rowadd_V3(int[800000,1000] a)
2 {
3 res = with {
4 ([0] <= iv < [800000-3]) :
5 with {
6 (iv <= jv < iv+3) : a[jv];
7 } : fold(+, genarray([1000], 0));
8 } : genarray([800000],genarray([1000],0));
9 return res;
10 }

(c) Adding rows using a fold withloop

Figure 1: Three ways of adding a low number of rows

example is slower than the equivalent programs in figures 1a and 1b,
more details on the SaC compilation process are required. These
will be discussed next.

4 SAC COMPILER
The SaC compiler works in a number of phases, like parsing, opti-
misations, code generation, etc. The most important phase for the
purpose of this paper is the memory phase. This phase determines
where results are located in memory. This can have a big impact
on the performance of nested withloops, as these have to deal with
intermediate results. Storing these intermediate results in a naive
way can cause overhead, or even require copies to be made. This
section explores the memory phase in more detail, to better describe
the reasons for this overhead, and what is being done to prevent it.
After that, section 5 will apply this information to the previously
discussed example of figure 1. A more complete overview of the
memory phase can be found in Grelck and Trojahner [12]. A more
detailed description can be found in Trojahner [22].

In-Place-Folding of Non-Scalar Hyper-Planes of Multi-Dimensional Arrays IFL 21, September 01–03, 2021, Online

Figure 2: Testing results for the rowadd functions

4.1 Array representation
As stated in section 2, arrays in SaC consist of a shape description
and data. Scalar values are arrays with an empty shape description.
The data part is a sequence of all the data of the array, stored se-
quentially in row-major order. This is stored in a continuous piece
of memory. The shape description determines the structure of the
array. It consists of a sequence of numbers describing the number
of elements in each dimension. An important detail is that while
SaC allows the definition of multidimensional arrays with nested
constructs such as array literals or withloops, internally all arrays
are non-nested. Even a multidimensional array is a single array
data structure, with one shape description and one continuous data
section. This means that the compiler needs to translate nested
definitions into code that generates a single array stored into con-
tinuous memory. Sections 4.2 and 4.3 will describe more details
about the memory management in SaC. Then, section 6.3 will show
how the memory of nested withloops is handled.

4.2 Reference counting
Automatically allocating memory is usually not that difficult. The
compiler can statically add some extra memory allocation instruc-
tions in front of every statement that needs memory, and the prob-
lem is resolved. The trouble begins when memory supply is limited,
and memory needs to be freed again. Any real system will have
some limit on the amount of available memory, so freeing memory
that is no longer used is important to keep the memory footprint
of a program low. The memory footprint of a program is the min-
imum amount of memory required to run the program without
crashing. By freeing memory as soon as possible the memory foot-
print can be minimised. The importance of this heavily depends
on the host system, but especially on systems with low memory
limits, such as embedded systems, this is important to keep the
cost of hardware low. Additionally, for multi-threaded programs
small differences in the memory footprint are multiplied further by
the need to allocate memory in every thread. There are two main

strategies to handle automatic memory freeing: delayed garbage
collection and reference counting. SaC uses reference counting for
this purpose. The choice between these two is heavily influenced
by the main thing that needs memory in SaC: Immutable Arrays.
The key challenge when dealing with immutable arrays is the need
to copy the data whenever you update it. This copying can add a
lot of overhead. This can be resolved by updating in-place without
copying first. The downside is that blindly updating in-place means
the immutability property is lost. This problem is also known as
the aggregate update problem[15]. However, if an array is only
used once, then it can be updated in-place at this usage without
violating immutability. There are two main ways to deal with this.
Either by automatically detecting when an array is only used once
at runtime, or by ensuring that certain arrays can only be used
once using the type system. An example of this second approach
is uniqueness types[2], but other systems also exist. They share
the common trait of putting more burden on the programmer. This
does not fit well within the design philosophy of SaC, so SaC does
not use it. The dynamic approach puts less burden on the program-
mer, but comes with extra runtime overhead. In order to tell if an
array is still used after a certain point, the system needs to keep
track of how many pointers to the data exist in the remainder of
the program. Because the control flow of a program is usually not
statically determinable, a dynamic solution is required. This can be
done by keeping track of the level of sharing at runtime. This exact
same system can also be used to free unused memory. Because if
a pointer to some data still exists, then it cannot be freed. If no
such pointer exists, then the memory can be safely freed, because
no one can access it anymore anyway. This system of memory
management is called reference counting or non delayed garbage
collecting. In the context of array programming reference counting
has established itself as a suitable trade off between programmer
productivity and runtime performance[9, 12, 23].

The main idea of reference counting is to tag each piece of al-
located memory with a number, which describes the amount of
times that piece of memory will still be needed in the remainder
of the program. This number starts of high, and is then reduced
by one each time the memory is referenced. It can also increase
again if at runtime a control flow is chosen that leads to a higher
number of usages. This is mainly the case when at the end of a loop
control switches back to the beginning instead of leaving the loop.
If the number reaches zero, the memory can be freed. If the number
reaches one, then the next statement that uses the memory is the
only one that still needs it. This allows for more efficient updating
without violating the functional semantics of SaC. A more detailed
overview of exactly how this is done can be found in Trojahner [22],
but for the purpose of this paper these details are not required. The
mere fact that a reference count exists for each piece of memory,
and what its value signifies is enough to explain the optimisation
described in section 6.

4.3 Memory instructions
The main purpose of the memory phase of the compiler is to make
all memory allocation and deallocation explicit. To do this, a couple
of new expressions are added to the SaC language, and introduced

IFL 21, September 01–03, 2021, Online Gijs van Cuyck and Sven-Bodo Scholz

into the code. Memory instructions are only required for data al-
located on the heap. In SaC, these are exactly all the non-scalar
values. Scalars are allocated on the stack, and therefore don’t need
additional memory management to free them.

The memory phase adds the concept of memory to the program.
Before this point, all variables can be seen as values. During the
memory phase, two additional types of variables are introduced:
empty memory, and filled memory. These three types of variables
are referred to as having the types 𝑉𝑎𝑙 ,𝑀𝑒𝑚, and𝑀𝑒𝑚𝑉𝑎𝑙 respec-
tively. At runtime, only filled memory can actually be used by the
processor. This means that the compiler has to transform all non-
scalar variables of type 𝑉𝑎𝑙 into variables of type 𝑀𝑒𝑚𝑉𝑎𝑙 . The
following is an overview of the memory instructions that accom-
plish this:

• 𝑎𝑙𝑙𝑜𝑐 :: 𝑉𝑎𝑙 → 𝑀𝑒𝑚

This is the most basic form of memory allocation, it takes a
description of howmuch memory to allocate as an argument,
and returns a pointer to the allocated memory.

• 𝑓 𝑖𝑙𝑙 :: 𝑉𝑎𝑙 ×𝑀𝑒𝑚 → 𝑀𝑒𝑚𝑉𝑎𝑙

The connection between the added memory instructions and
the code that was already present. It takes a value as its first
argument, and a pointer to some piece of allocated memory
as its second argument. It then fills the memory with the
given value.

• 𝑐𝑜𝑝𝑦 :: 𝑀𝑒𝑚𝑉𝑎𝑙 → 𝑉𝑎𝑙

This primitive takes some expression that was already placed
into memory, and returns its value. This is often used in
combination with the 𝑓 𝑖𝑙𝑙 primitive to fill a second piece of
memory with exactly the same contents as some existing
memory, effectively making a copy.

• 𝑠𝑢𝑏𝑎𝑙𝑙𝑜𝑐 :: 𝑀𝑒𝑚 ×𝑀𝑒𝑚𝑉𝑎𝑙 → 𝑀𝑒𝑚

A more advanced form of memory allocation, often used to
optimise memory allocation for withloops. It takes a pointer
to some existing piece of allocated memory as its first argu-
ment, and an index into this memory as the second argument.
The return value is then a pointer to a specific part of its first
argument. This way memory can be filled one section at a
time, in any order, instead of all at once front to back.

• 𝑓 𝑟𝑒𝑒 :: 𝑀𝑒𝑚𝑉𝑎𝑙 → 𝑉𝑜𝑖𝑑

The 𝑓 𝑟𝑒𝑒 instruction does exactly what it says on the tin. It
takes some filled memory as an argument, and then frees
it. This makes it available again for further use by 𝑎𝑙𝑙𝑜𝑐

expressions. There is no return value.
Apart from these basic memory instructions, there are also some
more complicated expressions introduced to reduce memory allo-
cation and deallocation as much as possible:

• 𝑟𝑒𝑢𝑠𝑒 :: 𝑀𝑒𝑚𝑉𝑎𝑙 → 𝑀𝑒𝑚

The 𝑟𝑒𝑢𝑠𝑒 expression skips a memory deallocation and allo-
cation step and transfers ownership of a piece of memory
directly. It takes a 𝑀𝑒𝑚𝑉𝑎𝑙 as an argument, and returns
something of type𝑀𝑒𝑚. This can for instance be used to cal-
culate updates in-place, if it can be statically inferred that the
old value is no longer necessary. This essentially performs a
noop, as both filled and empty memory are essentially the
same thing. The purpose of 𝑟𝑒𝑢𝑠𝑒 is to help keep the distinc-
tion between the two types of memory variables clearer. It

also helps with the bookkeeping that is required for intro-
ducing reference counting, later in the memory phase.

• 𝑎𝑙𝑙𝑜𝑐_𝑜𝑟_𝑟𝑒𝑢𝑠𝑒 :: 𝑉𝑎𝑙 ×𝑀𝑒𝑚𝑉𝑎𝑙+ → 𝑀𝑒𝑚

The 𝑟𝑒𝑢𝑠𝑒 primitive is great if you can statically infer that
a piece of memory will not be used anymore after a certain
point. This can however be difficult to check, mainly because
loops and if statements can affect the control flow of the pro-
gram in a dynamic way. Instead of just not trying to reuse
in these situations, there is the 𝑎𝑙𝑙𝑜𝑐_𝑜𝑟_𝑟𝑒𝑢𝑠𝑒 expression.
This expression, as the name suggests, contains the function-
ality of both an 𝑎𝑙𝑙𝑜𝑐 and a 𝑟𝑒𝑢𝑠𝑒 primitive. It takes all the
arguments of both expression types, so information about
how much memory to allocate, and a list of filled memory
to reuse. At runtime, it checks the reference count of all the
reuse candidates, and if any of them are one, then a pointer
to the memory of that variable is returned. This is the same
behaviour as the 𝑟𝑒𝑢𝑠𝑒 primitive, but now on a list of options
instead of just one. If none of the variables can be reused,
an entirely new piece of memory is allocated instead, as if a
regular 𝑎𝑙𝑙𝑜𝑐 instruction had been used.

• 𝑖𝑠_𝑟𝑒𝑢𝑠𝑒𝑑 :: 𝑀𝑒𝑚 ×𝑀𝑒𝑚𝑉𝑎𝑙 → 𝑉𝑎𝑙

This expression takes a𝑀𝑒𝑚 and a𝑀𝑒𝑚𝑉𝑎𝑙 variable as ar-
guments, and then checks if the given𝑀𝑒𝑚𝑉𝑎𝑙 is using the
given𝑀𝑒𝑚 as its memory. It returns 𝑡𝑟𝑢𝑒 if this is the case,
and 𝑓 𝑎𝑙𝑠𝑒 otherwise. This can be used to handle the initialisa-
tion of the memory allocated by 𝑎𝑙𝑙𝑜𝑐_𝑜𝑟_𝑟𝑒𝑢𝑠𝑒 instructions.
If a 𝑟𝑒𝑢𝑠𝑒 happens, then often nothing has to be done. If
an 𝑎𝑙𝑙𝑜𝑐 happens instead, then the contents of the newly
allocated memory often have to be set to a copy of one of
the reuse candidates. The 𝑖𝑠_𝑟𝑒𝑢𝑠𝑒𝑑 expression can be used
in combination with the 𝑖 𝑓 construct to make this choice at
runtime, when this cannot be statically inferred at compile
time.

Finally, one new memory primitive is added to the compiler to
allow the optimisation discussed in section 6:

• 𝑚𝑒𝑚_𝑟𝑒𝑢𝑠𝑒 :: 𝑀𝑒𝑚 → 𝑀𝑒𝑚

This primitive means almost the same as 𝑟𝑒𝑢𝑠𝑒 . The main dif-
ference lies in the type. The existing 𝑟𝑒𝑢𝑠𝑒 primitive returns
the memory used by some already filled memory, and thus
takes a𝑀𝑒𝑚𝑉𝑎𝑙 as an argument. The new𝑚𝑒𝑚_𝑟𝑒𝑢𝑠𝑒 primi-
tive takes memory as an argument, and returns that memory.
This means that, again, a noop is performed, and this time not
even the type changes. E.g., 𝑥 = _𝑚𝑒𝑚_𝑟𝑒𝑢𝑠𝑒_(𝑦) ≡ 𝑥 = 𝑦.
The main purpose of𝑚𝑒𝑚_𝑟𝑒𝑢𝑠𝑒 is to signify to the reference
counting system that 𝑦 is going to be used later in the form
of 𝑥 , and that it therefore cannot be statically freed, even if
the reference count of 𝑦 reaches 0. After the compiler phases
that deal with reference counting are done, all𝑚𝑒𝑚_𝑟𝑒𝑢𝑠𝑒
instructions are removed from the code, and variable propa-
gation is used to eliminate the extraneous variables. I.e., all
references to 𝑥 after 𝑥 = _𝑚𝑒𝑚_𝑟𝑒𝑢𝑠𝑒_(𝑦) are replaced with
𝑦, and the assignment itself is removed.

4.4 Withloop in-place computation
As stated earlier, arrays in SaC occupy a continuous section of mem-
ory. A genarray withloop works by first allocating this memory,

In-Place-Folding of Non-Scalar Hyper-Planes of Multi-Dimensional Arrays IFL 21, September 01–03, 2021, Online

and then filling it one element at a time. This becomes more compli-
cated if the elements themselves are also defined with a withloop.
If the same memory strategy is followed recursively, then the inner
withloop will also allocate memory and fill it. This piece of memory
allocated and filled by the inner withloop will then contain one
element of the outer withloop. However, since this memory was
freshly allocated, it is not part of the continuous section of memory
reserved by the outer withloop. To fix this, the result of the inner
withloop would have to be copied over to the correct memory of the
outer withloop. This is of course not efficient. To prevent this, a sub-
allocation can be done instead of a regular allocation of memory.
This works in the same way, but instead of returning fresh memory,
a piece of previously allocated memory is returned. By replacing
the allocation done by inner withloops with sub-allocations into
the memory of the outer withloop, the need for extra copies to
move data can be resolved. This optimisation, called the in-place
computation optimisation, can be applied later on in the compiler.
This allows the initial memory allocation for withloops to follow
the simple recursive scheme.

Using the memory primitives described in section 4.3, the mem-
ory allocation process for withloops can be made explicit. An ex-
ample of how the memory management of a nested withloop looks
before any optimisations change anything can be seen in figure 3a.
This example abstracts away over computation specific details by
using 𝑖𝑡𝑎𝑙𝑖𝑐 variables, which represent arbitrary expressions. Line
1 allocates memory for the outer withloop. At line 7 and 8, this
memory is filled one element at a time using the 𝑠𝑢𝑏𝑎𝑙𝑙𝑜𝑐 and 𝑓 𝑖𝑙𝑙

functions. The overhead this introduces can be seen in the form
of the 𝑐𝑜𝑝𝑦 call on line 8. The in-place computation optimisation
attempts to make the computation of withloop elements happen
in-place. To do this, it replaces the 𝑎𝑙𝑙𝑜𝑐 call responsible for allocat-
ing the memory of the elements with a 𝑠𝑢𝑏𝑎𝑙𝑙𝑜𝑐 call. This makes
sure that the memory that is used to calculate the elements is the
same memory where the result is expected to be. This way, the
extra copy instructions at line 8 can be avoided. Figure 3b shows
the results of applying the in-place computation optimisation to
figure 3a. Because the 𝑎𝑙𝑙𝑜𝑐 statement from line 3 is now gone, the
other memory management dealing with moving and freeing this
memory is now no longer needed, increasing performance.

For fold withloops, this works differently. Fold withloops do
not allocate their own memory beforehand, but follow a different
scheme instead. Functions in SaC allocate their own memory for
their result. Because the result of a fold withloop is always deter-
mined by a function call to its folding function, fold withloops don’t
do the memory allocation for their result directly. If fold withloops
would also allocate their own memory, then the result of the folding
function would always need to be copied over to the memory the
fold withloop allocated. Instead, thememory used for the final result
of a fold withloop is almost always allocated within the function
body of its folding function. The only exception being if the upper
and lower iteration bounds of the fold withloop are chosen such
that no iteration is executed. This means that the folding function
is never applied, in which case the result will be the neutral element
which is already located in memory.

\\ italic variables are placeholders1

outer_mem = alloc(outer_shape);2

outer = with { (iv_lb <= iv < iv_ub) {3

inner_mem = alloc(inner_shape);4

inner = with {5

(jv_lb <= jv < jv_ub) :6

computed_element7

}: genarray(inner_shape,inner_default_el)8

res_mem = _suballoc_(outer_mem,iv);9

res_copy = _fill_(_copy_(inner),10

res_mem);11

free(inner);12

} :res_copy13

}: genarray(outer_shape,outer_default_el)14

(a) before in-place computation

outer_mem = alloc(outer_shape);1

outer = with { (iv_lb <= iv < iv_ub) {2

inner_mem = _suballoc_(outer_mem,iv);3

inner = with {4

(jv_lb <= jv < jv_ub) :5

computed_element6

}: genarray(inner_shape,inner_default_el)7

} :inner_mem8

}: genarray(outer_shape,outer_default_el)9

(b) after in-place computation

Figure 3: Nested genarray withloop with explicit memory
instructions shown

5 PROBLEM REVISITED
Using the compiler details introduced in section 4, the problem
from section 3 can now be analysed in greater detail. To recap, the
main problem is that programs defined with nested fold withloops
produce significantly slower code than equivalent programs defined
with genarray withloops. To better understand this, we now look
at how the SaC compiler tries to optimise the three versions of
rowadd introduced in figure 1. The first two versions also contain
the extra addition of 0 as discussed in section 3 to make them more
comparable with the fold version. The hide function is used to
make sure the compiler does not optimise this extra addition away,
by hiding the fact that it is an all zero array. The semantics and
implementation of the hide function are the same as the identity
function. The first version can be seen in figure 4.

The main change is the addition of explicit memory instructions,
as there is little to optimise here. The second version in figure 5
now has a nested withloop within the withloop that was already
there. This second withloop represents the vector addition that
rowadd_V2 is doing. While it is possible to write these non-scalar
additions down directly using the + function, it is not possible
to directly execute these additions in one step at runtime. The +
function on vectors therefore needs to be translated into regular
addition on scalar values. The + function is overloaded, and the
SaC compiler picks the most fitting implementation from the stan-
dard library for the current context. In the case of rowadd_V2, the

IFL 21, September 01–03, 2021, Online Gijs van Cuyck and Sven-Bodo Scholz

1 int[800000,1000] rowadd_V1(int[800000,1000] a)
2 {
3 vect = hide(genarray([1000], 0));
4 res_mem = _alloc_([800000,1000]);
5 res = with {
6 ([0,0] <= [i,j] < shape(a) - [3,0]) {
7 elem_mem = _suballoc_(res_mem,[i,j]);
8 elem_val = vect[j] + a[i,j] +
9 a[i+1,j]+ a[i+2,j];
10 elem = _fill_(elem_val, elem_mem);
11 }: elem
12 } : genarray([800000,1000],0);
13 return res;
14 }
15

Figure 4: Optimised version of rowadd_V1

chosen implementation consists of a single withloop. Later on a
different optimisation called withloop scalarization will optimise
this further by merging the two one dimensional withloops into a
single two dimensional withloop. This optimisation is out of scope
for this paper, but more details can be found in Grelck et al. [11].
After withloop scalarization rowadd_V1 and rowadd_V2 look nearly
identical, which explains the similar performance seen in figure 2.
Rowadd_V3 looks different however. While the compiler will not
insert an actual for loop as seen in figure 6, the generated executable
code will operate roughly like this. The main structure of a trans-
lated fold withloop consists of an accumulator (𝑖𝑛𝑛𝑒𝑟_𝑟𝑒𝑠) and an
update step, which is represented by the for loop. The starting value
of the accumulator is the neutral value given to the fold withloop,
which in this case is a vector of all zeros. Then for each iteration of
the fold loop, the accumulator gets overwritten with a new value.
The final value of the accumulator is used as the result for the whole
withloop. The actual operation performed within the update step
is again a withloop, because almost all operations resulting in non-
scalar arrays are internally implemented as withloops. The main
difference between rowadd_V2 and rowadd_V3 is that the nesting
of withloops in rowadd_V3 is not direct. The for loop between the
outer and inner genarray withloop prevents withloop scalarization
from being applied. This results in code that still contains nested
withloops after all optimisations are applied.

This nesting introduces overhead, but this overhead can be pre-
vented with the in-place computation optimisation as discussed
in section 4.4. However, applying this optimisation to a nested
fold-withloop is not as straightforward as with nested genarray
withloops. The reason for this is that it relies on knowing exactly
which 𝑎𝑙𝑙𝑜𝑐 statement is allocating the memory for the withloop
elements. This information is available as long as the the memory
is allocated in the current scope. In figure 5, this is the allocation
on line 4, as genarray withloops allocate their memory before the
withloop itself. For figure 6, this allocation is contained within
the for loop on line 9. It is not executed just one time, but once
per iteration. This makes it impossible to just replace the 𝑎𝑙𝑙𝑜𝑐

statement responsible for the final result with a 𝑠𝑢𝑏𝑎𝑙𝑙𝑜𝑐 , as this
would be exactly the call to 𝑎𝑙𝑙𝑜𝑐 in the final iteration. Doing the

1 int[800000,1000] rowadd_V2(int[800000,1000] a)
2 {
3 vect = hide(genarray([1000], 0));
4 res_mem = _alloc_([800000,1000]);
5 res = with {
6 ([0] <= [i] < [800000-3]) : with {
7 ([0] <= [j] < [1000]) {
8 elem_mem = _suballoc_(res_mem,[i,j]);
9 elem_val = vect[j] + a[i,j] +
10 a[i+1,j]+ a[i+2,j];
11 elem = _fill_(elem_val, elem_mem);
12 }: elem
13

14 } : genarray([1000], 0);
15 } : genarray([800000],vect);
16 return res;
17 }
18

Figure 5: Optimised version of rowadd_V2

substitution would affect all iterations, not just the final one. This
would transform the loop from allocating fresh memory in each
iteration, to one that allocates the same memory every iteration.
This could work fine for some functions, but won’t work for others.
It is non-trivial to determine if doing the 𝑠𝑢𝑏𝑎𝑙𝑙𝑜𝑐 substitution here
will result in problems or not. As such, the SaC compiler currently
does not apply the in-place computation optimisation to nested
fold withloops at all.

As discussed, 𝑟𝑜𝑤𝑎𝑑𝑑_𝑉 3 results in a nested withloop, because
the withloop scalarization optimisation is not applicable. The in-
place computation optimisation is also not applicable to a nested
fold withloop. This means that 𝑟𝑜𝑤𝑎𝑑𝑑_𝑉 3 ends up allocating its
own memory within the folding function. At the end of the fold
withloop, on line 20 of figure 6, the contents of this memory need to
copied over to the memory allocated by the outer withloop. After
this, the memory allocated by the inner withloop needs to be freed.
This is exactly the overhead shown on lines 20 through 22 of fig-
ure 6. This overhead of one memory allocation, one copy operation
over the contents of this memory, and one memory deallocation,
could be the reason why 𝑟𝑜𝑤𝑎𝑑𝑑_𝑉 3 is slower than the other two
versions. If this is the case, then the performance can be increased
by finding a way to make the in-place computation optimisation
applicable. The remainder of this paper will therefore focus on
finding a way to make the in-place computation optimisation also
applicable to fold withloops, and testing if this reduces the speed
deficiency measured in figure 2.

The in-place computation optimisation can theoretically still
be applied to nested fold withloops, but not as straightforward as
with nested genarray withloops. The reason for this is that the
programmer is free to choose a folding function for a fold with-
loop, with no restrictions on what can happen in the body of that
function. Different functions behave in different ways, and not all
of them allow for calculating the result in-place. If the result can’t

In-Place-Folding of Non-Scalar Hyper-Planes of Multi-Dimensional Arrays IFL 21, September 01–03, 2021, Online

1 int[800000,1000] rowadd_V3(int[800000,1000] a)
2 {
3 vect = hide(genarray([1000], 0));
4 res_mem = _alloc_([800000,1000]);
5 res = with {
6 ([0] <= iv < [800000-3]) {
7 inner_res = vect;
8 for (j=0; j<3; j++) {
9 inner_mem = _alloc_or_reuse_(inner_res,
10 [1000]);
11 inner_res = with {
12 ([0] <= k < [1000]) {
13 fold_iter_mem = _suballoc_(
14 inner_mem,[k]);
15 fold_iter_val = inner_res[k] +
16 a[j,k];
17 fold_iter = _fill_(fold_res_val,
18 fold_res_mem);
19 }: fold_iter
20 } : genarray([1000], 0);
21 }
22 inner_res_mem = _suballoc(res_mem,iv);
23 inner_res_copy = _fill_(_copy_(inner_res),
24 inner_res_mem);
25 _free_(inner_res);
26 } : inner_res_copy;
27 } : genarray([800000],vect);
28 return res;
29 }

Figure 6: Optimised version of rowadd_V3

be calculated in-place, then the in-place computation cannot be
applied. This is for instance not possible with any folding function
where the result occupies a different amount of memory than the
intermediate accumulators. A specific example is for instance string
concatenation. A list of strings can be folded together using string
concatenation, but every intermediate accumulator would require
a different amount of memory. A different example of where this is
not possible is folding with the max function. The result will be one
of the arguments, which will already be located in memory some-
where. To use the in-place computation, it would need to be known
which regular allocation to replace. In order to know this, the result
of the max function needs to be calculated first. By this time, it is
already too late to use a suballoc, because the regular allocation
was already executed. While both of these examples illustrate why
sub-allocation with fold withloops is not always possible, it is cer-
tainly possible sometimes. An example of this is the code given
in figure 6, and by extension the code in figure 1c. This example
uses an accumulator of constant size, and is not overwriting it with
content that is already allocated elsewhere. By detecting this in the
compiler, the performance of rowadd_V3 can possibly be brought
more in line with that of the other versions. The next section will
discuss how this can be done.

6 IN-PLACE ACCUMULATOR OPTIMISATION
As discussed in section 4.4, the main reason why the in-place com-
putation optimisation is not applicable to fold withloops is because
the source of their memory is not clearly defined. For example, fold-
ing with a constant function would allocate fresh memory inside
the function itself. Folding with a max function would return some
existing piece of memory, but it is not possible to predict which
memory without first calculating all the elements and checking
which one is the biggest. At that point, it is too late to apply the
in-place computation optimisation and a copy is required. There is
however one common source of the result memory of a fold with-
loop that does have potential to benefit from the suballoc system.
This occurs when the fold withloop is trying to reuse the memory of
its internal accumulator for the result. Whether or not this happens
depends on what operation is used to do the actual folding. Many
common folding operations do some kind of reduction where they
combine a value with an accumulator of a fixed size to create a
new value for the accumulator. This is especially common with
arithmetic operations such as addition or matrix multiplication on
square matrices. These kinds of operations would greatly benefit
from being calculated in-place, especially when they are called on
large arrays.

The actual optimisation consists of three main steps. Each of
these steps will be expanded upon in its own section.

(1) Check if the optimisation is applicable to a particular fold
withloop. Only continue with the next step if it is. (sec-
tion 6.1)

(2) Allocate memory for the accumulator outside the fold loop.
Replace the attempt at reusing the old accumulator with
explicitly reusing this new memory. (section 6.2)

(3) Replace the alloc statement for the memory of the accu-
mulator with a suballoc statement, then delete the now un-
necessary copy instructions at the end of the fold withloop.
(section 6.3)

6.1 Applicability
The first step in applying the optimisation is checking if the optimi-
sation can actually be applied. This can be done by traversing the
program and looking for the pattern shown in figure 7a. This figure
shows a simplified version of the code pattern as it looks like during
the memory phase of the SaC compiler. It only shows relevant code,
but the actual pattern allows for any amount of arbitrary statements
to be inserted between any of the statements shown in the figure.
Because of the functional semantics of SaC, each variable has ex-
actly one definition. Even function calls in between the definition
and usage of a variable cannot affect its value or where that value
is located in memory. This allows for relatively straightforward
tracing of where the memory of a variable expression is coming
from. The main purpose of this step is tracing where the memory of
the accumulator of the fold withloop is coming from, and checking
if this is the same memory used by the previous accumulator.

Fold withloops always start by creating a variable for the accu-
mulator using the _𝑎𝑐𝑐𝑢_ primitive. This will either contain the
result of the previous iteration, or the neutral element if it is the

IFL 21, September 01–03, 2021, Online Gijs van Cuyck and Sven-Bodo Scholz

res = with { (lb_i <= iv_i < ub_i) {1

accumulator = _accu_(iv_i);2

accu_mem = _alloc_or_reuse_(accumulator);3

. . .4

expr = . . .5

accu = fill_like_operation(expr, accu_mem);6

iteration_res = _unshare_(accu, iv_i);7

} :iteration_res8

}: fold(fold_op, neutral_el)9

(a) Code pattern before in-place accumulator optimisation.

⇓
fold_mem = _alloc_(dim(neutral_el),1

shape(neutral_el));2

res = with { (lb_i <= iv_i < ub_i) {3

accumulator = _accu_(iv_i);4

accu_mem = _mem_reuse_(fold_mem);5

. . .6

expr = . . .7

accu = fill_like_operation(expr, accu_mem);8

iteration_res = _unshare_(accu, iv_i);9

} :iteration_res10

}: fold(fold_op, neutral_el)11

(b) Code pattern after in-place accumulator optimisation.

Figure 7: In-place accumulator optimisation. Code before
optimisation (top) and equivalent code after optimisation
(bottom).

first iteration. If the withloop tries to reuse the memory of this accu-
mulator variable for the result, then the optimisation is applicable.
The first thing to do is therefore looking for an _𝑎𝑙𝑙𝑜𝑐_𝑜𝑟_𝑟𝑒𝑢𝑠𝑒_
statement on the accumulator variable, and then checking that the
result of this statement is used as the memory for the result of the
whole withloop, which is the expression at line 8. In this example,
the memory of the accumulator is stored in 𝑎𝑐𝑐𝑢_𝑚𝑒𝑚. Line 5 is
an abstraction of the actual calculation the withloop is doing. This
calculation usually consists of several steps, but always ends with
a final step that stores the result in memory. Line 6 represents this
last assignment to memory. It stores the result of the calculation,
represented by 𝑒𝑥𝑝𝑟 , in the 𝑎𝑐𝑐𝑢 variable, using 𝑎𝑐𝑐𝑢_𝑚𝑒𝑚 as the
needed memory. The 𝑓 𝑖𝑙𝑙_𝑙𝑖𝑘𝑒_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 here is a placeholder for
whatever construct is used to fill 𝑎𝑐𝑐𝑢_𝑚𝑒𝑚 with the value of 𝑒𝑥𝑝𝑟 .
This can simply be the fill primitive as discussed in section 4.3, but
it could also be a withloop. The definition of 𝑒𝑥𝑝𝑟 can be any arbi-
trary expression, and the name 𝑎𝑐𝑐𝑢 is also just an example name
for the result variable. The important part is that after this line,
𝑎𝑐𝑐𝑢 is using 𝑎𝑐𝑐𝑢_𝑚𝑒𝑚 as its memory, which is the same memory
used by the accumulator. Line 7 represents code inserted by another
optimisation, and returns the 𝑎𝑐𝑐𝑢 variable, as long as it does not
use the same memory as 𝑖𝑣_𝑖 . Then in line 8 the 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑠 vari-
able, still using the memory from the old accumulator, is passed on
as the result. This confirms that the next accumulator will use the
same memory as the old accumulator. Since this fold loop is there-
fore using the same memory for its accumulator in each iteration,

this memory is guaranteed to contain the final result. By using a
𝑠𝑢𝑏𝑎𝑙𝑙𝑜𝑐 instead of a regular 𝑎𝑙𝑙𝑜𝑐 on the place where this memory
is allocated, the entire calculation can be done in-place. The logical
next question then becomes, where is this memory allocated? This
is made explicit in the next step of the optimisation.

6.2 Explicit accumulator memory
After having determined that a fold withloop fulfils all the required
conditions, the actual optimisation can be applied. As previously
discussed, the main goal is to clearly define where the memory for
this fold withloop is allocated. Finding the original 𝑎𝑙𝑙𝑜𝑐 statement
that does this is difficult and it is often outside of the local scope.
E.g., within a different function than the one containing the fold
withloop. This means that even if it is located, it might not be pos-
sible to do anything with it because other sections of code are also
using that same statement in some way. The solution is to allocate
an entirely new section of memory, which is therefore guaranteed
to be local and not used by anything else. It is then also clearly
known which statement to later adjust for in-place computation,
namely the one that just got introduced. This will bring the fold
withloop in line with the genarray withloop, which also allocates a
fresh section of memory before the start of the loop.

Allocating fresh memory instead of reusing what was already
allocated introduces extra overhead in two ways:

(1) The actual allocation has to go via the run-time memory
management system through the operating system. This
takes a small amount of time, depending on the host sys-
tem and the memory manager in use. (SaC supports several
options, depending on the host operating system).

(2) The resulting memory often has to be initialised. This means
doing a copy, which takes some time as well.

However, in this specific scenario, both of these can be prevented
from happening. The first point gets completely eliminated by the
in-place computation phase later. The 𝑎𝑙𝑙𝑜𝑐 that is introduced here
is guaranteed to be replaced with a 𝑠𝑢𝑏𝑎𝑙𝑙𝑜𝑐 , and 𝑠𝑢𝑏𝑎𝑙𝑙𝑜𝑐 does
not allocate fresh memory. Instead, it simply returns a pointer to
previously allocated memory. In fact, the resulting code gets faster,
because the allocation done by the 𝑎𝑙𝑙𝑜𝑐_𝑜𝑟_𝑟𝑒𝑢𝑠𝑒 statement on line
3 of figure 7a, which was not compatible with suballoc, is replaced
by an allocation that is. Additionally, since the old allocation is
prevented, the statement that frees that memory also gets removed.
This is because memory allocated with suballoc does not need to
be individually freed. It will be freed when the memory that is
sub-allocated into is freed all at once. This means that introducing
this fresh allocation here will actually reduce the total amount of
memory allocations and de-allocations by one each.

The second cause of overhead can also be avoided here, because
of the distinction between variables representing values, empty
memory or filled memory, as discussed in section 4.3. They are re-
spectively referred to as having type𝑉𝑎𝑙 ,𝑀𝑒𝑚 and𝑀𝑒𝑚𝑉𝑎𝑙 .𝑀𝑒𝑚

variables are introduced by the compiler, and therefore they are
only used in specific situations. Most notably, they are essentially
write only. There are only a few constructs within SaC that can do
something with a𝑀𝑒𝑚 variable, as discussed in section 4.3. These

In-Place-Folding of Non-Scalar Hyper-Planes of Multi-Dimensional Arrays IFL 21, September 01–03, 2021, Online

are 𝑓 𝑖𝑙𝑙 , 𝑓 𝑟𝑒𝑒 , 𝑖𝑠_𝑟𝑒𝑢𝑠𝑒𝑑 , and 𝑠𝑢𝑏𝑎𝑙𝑙𝑜𝑐 . None of these can access the
value of the memory. Using 𝑓 𝑖𝑙𝑙 completely overwrites the memory
and 𝑓 𝑟𝑒𝑒 simply frees the memory without looking into its value.
The 𝑖𝑠_𝑟𝑒𝑢𝑠𝑒𝑑 primitive only compares pointers to check if a value
is stored in a piece of memory, which also does not require look-
ing at the value of the memory. Finally, 𝑠𝑢𝑏𝑎𝑙𝑙𝑜𝑐 does look into the
memory, but only does some pointer arithmetic, again without look-
ing at the stored data. It returns a new𝑀𝑒𝑚 variable to a smaller
piece of memory, but by induction that one will also not be read
into. The only way to read from memory is to fill a𝑀𝑒𝑚 variable
first using 𝑓 𝑖𝑙𝑙 or some other primitive with similar semantics. This
will then return a𝑀𝑒𝑚𝑉𝑎𝑙 variable, which can be read from. This
means that all 𝑀𝑒𝑚 variables are uninitialised, and initialisation
only happens when the memory is filled with some primitive. All
of these primitives will then return a new𝑀𝑒𝑚𝑉𝑎𝑙 variable, which
can be used for reading the values, but not for writing. The im-
portant detail from all of this is that when a𝑀𝑒𝑚𝑣𝑎𝑙 variable gets
replaced with fresh memory, it needs to be initialised to maintain
the same semantics. However, when replacing a𝑀𝑒𝑚 variable with
fresh memory, this is not required because all memory variables
are uninitialised to begin with. This short explanation skipped over
a lot of details about the memory management system which are
irrelevant for the in-place accumulator optimisation. For instance,
section 4.3 does not contain all memory primitives. The missing
ones are all variations of 𝑓 𝑖𝑙𝑙 however, so the same reasoning still
holds. A more thorough explanation about the details of memory
variables and how they can and cannot be used can be found in
Trojahner [22].

The fact that 𝑀𝑒𝑚 variables are write only means that in the
example of figure 7, 𝑎𝑐𝑐𝑢_𝑚𝑒𝑚 cannot be used to access the accu-
mulator. This can only be done through the 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 variable,
which is a 𝑀𝑒𝑚𝑉𝑎𝑙 . On the other hand, writing to the accumula-
tor is done exclusively through 𝑎𝑐𝑐𝑢_𝑚𝑒𝑚. This means that after
the replacement of 𝑎𝑐𝑐𝑢𝑚_𝑚𝑒𝑚 with 𝑓 𝑜𝑙𝑑_𝑚𝑒𝑚 using the new
𝑚𝑒𝑚_𝑟𝑒𝑢𝑠𝑒 primitive on line 4 of figure 7b, 𝑓 𝑜𝑙𝑑_𝑚𝑒𝑚 does not
need to be initialised, as it will not be read from anyway. It will
exclusively be used to store the next version of the accumulator.
On the first iteration this is the same as writing the result to a fresh
piece of memory, which is always fine. On subsequent iterations,
this will overwrite the previous accumulator, as that was using the
same memory. This is also fine, because the un-optimised code was
doing the exact same overwrite using 𝑎𝑙𝑙𝑜𝑐_𝑜𝑟_𝑟𝑒𝑢𝑠𝑒 . Since after
the optimisation the same memory gets overwritten in the same
place in the code, this cannot cause any problems that were not
already there.

6.3 In-place computations
The final step of the optimisation is to put the initial idea into
action, with is to reuse the existing implementation of the in-place
computation optimisation in the fold context. As planned, it turns
out it suffices to mark the affected fold withloops with where their
memory is allocated. Since the fold withloops that were affected by
the in-place accumulator optimisation now also have their memory
allocation in front of the loop, the existing system can be reused. All
that is required is to flag the fold withloops that can now be further

optimised with their result memory, and the existing optimisation
code takes care of the rest.

7 RESULTS
Theoretically, the optimisation proposed in section 6 should solve
some of the extra overhead seen for 𝑟𝑜𝑤𝑎𝑑𝑑_𝑉 3 in figure 2. After
applying the in-place accumulator optimisation, the performance
of 𝑟𝑜𝑤𝑎𝑑𝑑_𝑉 3 should be more similar to that of the other two ver-
sions. To test this, the same test that gave the results for figure 2
is repeated for 𝑟𝑜𝑤𝑎𝑑𝑑_𝑉 3 using the new in-place accumulator
optimisation. This means executing a program that calls the func-
tion once, a hundred times, calculating the mean execution time,
and then plotting the 95 results closest to the mean. The results
of this test, added to the previously gathered results, can be seen
in figure 8. As expected 𝑟𝑜𝑤𝑎𝑑𝑑_𝑉 3 performs significantly better
when compiled with the in-place accumulator optimisation enabled.
The mean execution time shifted from 6.3 seconds to 6 seconds,
which is a roughly 5% speedup. It is still not as efficient as the other
two versions, but it is now only 3% slower, instead of 10%. The
performance gap is smaller now, moving from 0.5 seconds to 0.2
seconds, which means that roughly 60% of the fold overhead is
resolved. The remaining performance difference can be explained
by the fact that there is still a nesting of withloops, which will
always have some loop overhead compared to running just a single
withloop. The in-place accumulator optimisation seems like a step
in the right direction however.

Figure 8: Testing results for the rowadd functions, including
optimised V3

Throughout the paper the fixed example of rowadd was used to
explain the problem of fold overhead. This example is an instance
of a typical pattern where the fold performance hit comes into
play. The in-place accumulator optimisation works well on this
example, but we also want to know if it works well in general. To
to this, we look at variants of the problem, where the two array
dimensions and the amount of work being done is varied. We try

IFL 21, September 01–03, 2021, Online Gijs van Cuyck and Sven-Bodo Scholz

to systematically evaluate what the impact of the optimisation is
across these three axis. With this, we get a better idea of what the
impact of the optimisation is on more general programs.

use Array: all;1

use StdIO: all;2

use Benchmarking: all;3

4

\\ Id functions to prevent the compiler from5

\\ calculating the entire program as a6

\\ constant at compile time.7

noinline int[INNER] id(int[INNER] a)8

{ return a; }9

10

noinline int[OUTER,INNER] id(int[OUTER,INNER] a)11

{ return a;}12

13

int main()14

{ \\ Calculate initial elements. Hide15

\\ details behind non-inlined functions16

\\ so they are not seen as constants.17

zeroes = id(genarray([INNER], 0));18

a = id(genarray([OUTER,INNER], 1));19

20

\\ Start benchmarking time.21

i1 = getInterval("vect", 0);22

start(i1);23

24

\\ Calculate a single update step25

updated_a = with {26

(. <= iv < [OUTER-N]) {27

\\ Calculate c = a[iv] + a[iv+1]28

\\ + ... + a[iv+N].29

c = with {30

(iv <= jv < iv+N) : a[jv];31

} : fold(+, zeroes);32

} : c;33

} : genarray([OUTER], zeroes);34

\\ Stop benchmarking time.35

end(i1);36

\\ Print part of result to make sure the37

\\ calculation does not get optimised away.38

print(updated_a[1,2]);39

\\ Print benchmarking results40

printResult(i1);41

t,u = returnResultUnit(i1);42

printf("GFLOPS per %s: %f \n",43

u, tod((OUTER-N)*INNER*N)/(1000000000.0*t));44

return 0;45

}46

Figure 9: Benchmark which calculates an update step

The program shown in figure 9 is used as the basis of these
tests. It is a generalised version of the example shown in figure 1c.
The program has three parameters labelled 𝐼𝑁𝑁𝐸𝑅, 𝑂𝑈𝑇𝐸𝑅 and

𝑁 . These parameters are set using macros. This variation, in com-
bination with several compiler options, gives a set of benchmark
tests. The program itself calculates an abstract version of an update
step, as found in several algorithms. It starts with the array 𝑎, and
then calculates 𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑎 from that. This happens in line 23 to line
31. Most of the rest of the program is boilerplate to prevent the
constant propagation optimisation to replace the entire calculation
with the result at compile time. The compiler can normally do this,
because the input is already fully specified at compile time. The
benchmarking code itself is also given explicitly. It uses the bench-
marking library to keep track of time during the actual calculation,
which is defined as the code between the 𝑠𝑡𝑎𝑟𝑡 (𝑖1) and 𝑒𝑛𝑑 (𝑖1) lines.
The benchmarking output is given in giga floating point operations
per second, or gflops for short. This is how many billion floating
point operations the program can execute in a second, which is
calculated by dividing the total amount of floating point operations
by the execution time. The exact flops calculation used can be seen
on line 41.

The main calculations done by the program can be summarised
as follows:

𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑎[𝑖] =
𝑁∑
𝑛=0

𝑎[𝑖 + 𝑛]

This is done for every valid value of 𝑖 , which ranges from 0 to
𝑂𝑈𝑇𝐸𝑅 − 𝑁 . The summation itself computes 𝑁 additions. The
values that are being added are arrays themselves, because 𝑎 is
two-dimensional and it is being indexed with a scalar value. This
results in an array of shape [𝐼𝑁𝑁𝐸𝑅]. Adding two such arrays
together comes down to adding them index-wise, which is 𝐼𝑁𝑁𝐸𝑅

floating point operations. Therefore the entire program computes
(𝑂𝑈𝑇𝐸𝑅 − 𝑁) ∗ 𝑁 ∗ 𝐼𝑁𝑁𝐸𝑅 floating point operations.

Figure 10 shows the results of running the program with or with-
out the optimisation using the inputs seen in figure 10b. 𝑁 was kept
constant at 2. To account for the effects of varying system load on
performance, each test was run 20 times and the average has been
plotted in figure 10a. Bars are shown at each measuring point to
signify the standard deviation measured. Unless stated otherwise,
all results in this section use 𝑁 = 2 and the values of 𝐼𝑁𝑁𝐸𝑅 and
𝑂𝑈𝑇𝐸𝑅 as seen in figure 10b. The x-axis shows the value of𝑂𝑈𝑇𝐸𝑅
divided by 𝐼𝑁𝑁𝐸𝑅, in order to show the changes of both variables
on a single axis. The values for 𝑂𝑈𝑇𝐸𝑅 and 𝐼𝑁𝑁𝐸𝑅 are chosen
in such a way that the size of the resulting array is the same for
each combination. What changes is the relation between how big
the outer dimension is and how big the inner dimension is. The
figure shows that the optimisation gives a reasonably consistent
improvement no matter the values for 𝑂𝑈𝑇𝐸𝑅 and 𝐼𝑁𝑁𝐸𝑅. This
makes sense, because the optimisation offers a scaling improve-
ment in both cases. If 𝑂𝑈𝑇𝐸𝑅 is big, then the inner fold withloop
needs to be calculated many times. For each iteration of the outer
withloop, a memory allocation, de-allocation and copy operation
are optimised away. This will therefore give more visible results if
more iterations are executed. The other way around also holds how-
ever. All the previously mentioned operations that are optimised
away are normally executed over an array of shape [𝐼𝑁𝑁𝐸𝑅]. Es-
pecially for the copy operation, this means that if 𝐼𝑁𝑁𝐸𝑅 is big,
the operation takes more time. This means that the in-place accu-
mulator optimisation will also give better results if 𝐼𝑁𝑁𝐸𝑅 gets

In-Place-Folding of Non-Scalar Hyper-Planes of Multi-Dimensional Arrays IFL 21, September 01–03, 2021, Online

bigger. From the figure it seems like the extra performance gain
for large𝑂𝑈𝑇𝐸𝑅 is more significant than the one for large 𝐼𝑁𝑁𝐸𝑅,
because the difference in performance gets bigger on the right side
of the graph. The sudden dip in overall performance, both with
and without the optimisation, on the right side of the graph also
indicates that performing many small operations (large 𝑂𝑈𝑇𝐸𝑅,
small 𝐼𝑁𝑁𝐸𝑅) is less efficient in general than executing less big op-
erations (small 𝑂𝑈𝑇𝐸𝑅, large 𝐼𝑁𝑁𝐸𝑅). This makes sense, because
every withloop adds some overhead in setting up breaking down.
The more time is spent entering and leaving withloops, the less
time is spent actually calculating the result, which decreases the
floating point operations per second.

(a) Execution results for 𝑁 = 2

INNER 100000 32000 10000 3200 1000 320 100 32 10
OUTER 1000 3125 10000 31250 100000 312500 1000000 3125000 10000000

(b) Values for 𝐼𝑁𝑁𝐸𝑅 and𝑂𝑈𝑇𝐸𝑅.

Figure 10: Comparison of code performance with and with-
out the optimisation.

The effect of the loop overhead can be reduced by increasing
the amount of work a single loop iteration does. The workload of
the inner fold withloop can be increased by increasing the value
for 𝑁 . This means that it will add more rows together, by doing
more iterations. This will then increase the workload for a single
iteration of the outer withloop. The results of this can be seen in
figure 11. Because the total amount of floating point operations has
gone up, while the amount of loop iterations stayed the same, the
effect of the loop overhead relative to the time spend performing
calculations has gone down. This results in a higher amount of
floating point operations per second, which increases further as
𝑁 goes up. Another notable change is that the performance gain
on the left side of the figures goes down, eventually disappearing
entirely. The performance gain on the right side of the figures seems
to be unaffected however. This is because even with a bigger value
for𝑁 , if the value for 𝐼𝑁𝑁𝐸𝑅 is very small, the total workload of the
inner fold withloop (𝑁 ∗ 𝐼𝑁𝑁𝐸𝑅) is still small. A smaller workload
for the inner withloop means the effects of the loop overhead are
more distinct. This in turn means the effects of reducing the loop
overhead are more visible.

To get an idea of what these numbers mean and if they are good
or not, a baseline is required. This can be obtained by modifying
the code of line 28 of figure 9 as described in figure 12.

This change does not change the semantics, but it does allow
the compiler to unroll the withloop because the index range of 𝑗𝑣
is now just depending on constants, and no longer on 𝑖𝑣 . After this

(a) Execution results for 𝑁 = 3 (b) Execution results for 𝑁 = 5

(c) Execution results for 𝑁 = 7 (d) Execution results for 𝑁 = 9

(e) Execution results for 𝑁 = 12 (f) Execution results for 𝑁 = 15

Figure 11: More comparison results for bigger values of 𝑁

(iv <= jv < iv+N) : a[jv];

⇓

(0 <= jv < N) : a[iv+jv];

Figure 12:Modification to foldwithloop that will allowwith-
loop unrolling

change, the compiler sees that the fold withloop is only calculating
a total of 𝑁 iterations. For small values of 𝑁 (by default 9) the
compiler will decide that it is more efficient to unroll the withloop.
This means that instead of compiling into code with a loop like
described in figure 6, the loop gets optimised away. This can be
done by copying the body of the loop one time for each iteration,
resulting in a sequential program with code duplication. However,
since the loop is now gone, the reason why withloop scalarization
was not applicable is now also gone. This means that the unrolled
inner withloop gets merged with the outer withloop, removing all
the overhead caused by the inner withloop in the process. Since
the main goal of the in-place accumulator optimisation is to reduce
this overhead, removing it entirely is the best achievable result. The

IFL 21, September 01–03, 2021, Online Gijs van Cuyck and Sven-Bodo Scholz

(a) Unmodified for 𝑁 = 2 (b) Unrolled withloops for 𝑁 = 2

(c) Unmodified for 𝑁 = 3 (d) Unrolled withloops for 𝑁 = 3

(e) Unmodified for 𝑁 = 5 (f) Unrolled withloops for 𝑁 = 5

Figure 13: Comparison of results with and without the mod-
ification described in figure 12

results of this experiment can be seen in figure 13. The right side
of the figure contains the results obtained by the modification in
figure 12, which optimises the inner fold withloop away. The left
side of the figure contains the equivalent results without this modi-
fication. As expected, with the change to the inner fold withloop
the optimised and non optimised code are performing equivalently
in this case. If there is no inner withloop, then the in-place accumu-
lator optimisation has nothing to optimise. When comparing right
and left graphs, it also becomes visible that in roughly the middle of
the graphs, the performance achieved by the in-place accumulator
optimisation is approaching the same performance as when the
withloop is fully optimised away. On the edges of the graphs, there
is a larger gap in performance. This same gap is however also there
with the non-optimised results (the orange lines) in the left graphs.
This suggests that this gap is caused by the nesting of the withloops,
and not by the loop overhead.

Since the optimisation aims to reduce overhead caused primarily
by memory management, an interesting experiment is to look at
the the results when using different memory management systems.
SaC has its own memory management system called the private
heap manager (phm). This can be disabled to use the system default,
which uses 𝑚𝑎𝑙𝑙𝑜𝑐 and 𝑓 𝑟𝑒𝑒 as defined by the local c compiler.

(a) Execution results with the
phm on for 𝑁 = 2

(b) Execution results with the
phm off for 𝑁 = 2

(c) Execution results with the
phm on for 𝑁 = 5

(d) Execution results with the
phm off for 𝑁 = 5

(e) Execution results with the
phm on for 𝑁 = 12

(f) Execution results with the
phm off for 𝑁 = 12

Figure 14: Comparison of results with and without the phm

The private heap manager is not available on macOS, so both the
behaviour with and without the phm is relevant. All other results
in this section are obtained by compiling with the private heap
manager, unless explicitly stated otherwise. The previously shown
results are shown next to results of the same experiments with the
private heap manager off in figure 14. The general performance of
the program without the private heap manager is lower that when
it is enabled. This makes sense, because the private heap manager
is specifically tailored for SaC. It therefore performs better than the
more general system default memory manager does, which is used
when the phm is disabled. For low values of 𝑁 , the optimisation
gives a bigger improvement without the memory manager than
with it. If 𝑁 is low, there is relatively more loop overhead. The
private heapmanager can reduce this loop overhead by streamlining
memory allocation and de-allocation. Without the private heap
manager, the effect of memory (de)allocations is higher, so when
the in-place accumulator optimisation removes some of them, this
has a greater effect. In general the choice for heap manager does not
really matter based on the values for 𝐼𝑁𝑁𝐸𝑅 and𝑂𝑈𝑇𝐸𝑅. In some
specific cases there are differences. These seem to be an artefact of
the way the heap managers allocate arrays of different sizes.

In-Place-Folding of Non-Scalar Hyper-Planes of Multi-Dimensional Arrays IFL 21, September 01–03, 2021, Online

8 RELATEDWORK
While this paper focused heavily on the specific problems caused by
nesting fold withloops within the SaC programming language, sim-
ilar problems also exist in other languages. The idea of compiling a
high level functional language to high performance, system specific
code is not limited to just SaC. Other projects such as Futhark[13],
Lift[20], Accelerate[5], Sisal[10], SkePU[8], Marrow[19], Halide[17],
etc follow a similar design philosophy, and therefore might run
into similar memory problems. These systems also run into the
challenge of dealing with memory for nested computations in an ef-
ficient manner. This section describes a few of these related projects.
Details on the exact memory strategies used by these languages are
often not available. In addittion, memory focus often lies on effec-
tive use of device memory (GPU memory). This paper focuses on
system memory (main memory). The proposed optimisation might
be transferable, but this needs further research. If the internal mem-
ory representation of arrays is not flat, but a nested structure using
pointers, than in-place computation is not required, as intermediate
results do not need to be moved around. However, flat memory
representations have several advantages, and are therefore more
likely to be in use.

The Futhark language[13, 14] has many similarities with SaC.
They both are array languages with functional semantics and a
focus on having the same code be compiled efficiently for different
systems. Futhark also runs into the problem that code with nested
constructs is often easy to write, but not as efficient to execute.
While this paper aims to reduce this problem by reducing the over-
head caused by nesting, the Futhark compiler focuses on removing
nesting by various types of flattening, for instance Blellochs algo-
rithm [4]. This approach has been refined over time, but is not yet
as fast as hand optimised code [3, 7]. It might be possible to com-
bine the flattening approach and in-place computation approach
in one system, which would reduce the amount of cases where
optimisation is not possible. However, Futhark is heavily focused
on parallel computing, and this research has focused on generating
sequential code.

Another high level functional language focusing on high perfor-
mance parallel computation is Lift. In addition to compiler optimi-
sations, Lift also limits the expressiveness of some constructs. For
instance, arbitrary array indexation is not possible. This means that
arrays can only be accessed through certain constructs such as map
or reduce. By limiting the number of constructs that can access
arrays, it becomes easier to reason about data sharing. An early
publication on Lift stated that no memory reuse was being done
[20]. A later publication talks about memory reuse, but does not
give an implementation[21]. This same publication does state that
Lift also runs into the problem of overhead caused by generating
intermediate results. The proposed solution is to fuse operations
together. There is no description of what happens when this fails
or is inefficient, which is where in-place computations might help,
depending on the used memory layout.

Another approach to obtain a high level language for parallel con-
structs with high performance is to use domain specific languages.
Examples of this include Accelerate[5], SkePU[8], Marrow[19] and
Halide[17]. These work by embedding inside a general purpose
language such as Haskell or c++. This means that they often do not

do their own memory management, as this is handled by the host
language. The same problems with intermediate results caused by
nesting also appear here however, and the chosen solution often
focuses on flatting[6, 16]. Marrow however explicitly focuses on al-
lowing the nesting of parallel constructs. In addition, flattening too
much makes implementing compiler optimisations harder, which
can result in less efficient code. When flattening fails or is otherwise
undesired, and the language has direct control over its memory
management, in-place computations could help improve perfor-
mance. Halide stands out here because it explicitly decouples what
an algorithm computes form how/where it is executed. This allows
manual control over the location of intermediate results. Work has
also been done on using machine learning to automate finding the
most optimal execution strategy[1]. This approach is probably not
combinable with defining specific compiler optimisations like the
one proposed in this paper, but is likely to solve the same problem.

Other languages like the Sisal[10] take an aproach similar to
SaC. They use reference counting to focus on in-place updating
wherever possible, in addition to fusing loops. In such a setting the
in-place accumulator optimisation might also be of help.

9 CONCLUSION
This paper has looked into the problem that SaC code using nested
fold withloops performs worse than equivalent code without fold
withloops. This violates the design philosophy of SaC, and forces
programmers to think about implementation details again if they
want efficient code. To make the problem more specific, section 3
introduced the three versions of 𝑟𝑜𝑤𝑎𝑑𝑑 . These did not have the
same performance, while they did compute the same result. A simi-
lar performance is desirable to free the programmer from having
to worry about efficiency. The hypothesis was that one of the main
causes for the performance discrepancy is a lack of memory reuse
in nested fold withloops. After analysis of the way the three ver-
sions of rowadd are compiled this turned out to be correct. Several
other optimisations, such as withloop scalarization and in-place
computations, are not applicable to nested withloops. This leads to
less efficient memory management and extra copies in the gener-
ated code. Rewriting all these optimisations to also work for fold
withloops is difficult at best and impossible at worst. Instead, this pa-
per takes the approach to rewrite the fold-withloops themselves to
make themmore similar to other types of withloops. Fold withloops
cannot predict where the final result will be allocated. This informa-
tion is required for the existing memory reuse optimisations. The
key insight of this paper is that if a fold withloop can be calculated
in-place, then this information can be made available. The in-place
accumulator optimisation introduced in section 6 is designed to
detect when this is possible. It brings the memory management of
fold withloops in-line with the memory management of genarray
withloops, if the fold withloop accumulator can be calculated in-
place. This allows the existing in-place computation optimisation
to also work for these nested fold withloops. The source code for
the in-place accumulator optimisation is available online [24].

After doing a performance evaluation in section 7, the conclu-
sion is that the in-place accumulator optimisation significantly
improves the performance of 𝑟𝑜𝑤𝑎𝑑𝑑_𝑉 3. The performance gap

IFL 21, September 01–03, 2021, Online Gijs van Cuyck and Sven-Bodo Scholz

between the 𝑟𝑜𝑤𝑎𝑑𝑑 functions is reduced by 60%. More general
testing shows that the optimisation gives an improvement when
the inner fold withloop is executed a lot, because every iteration is
slightly faster, so more iterations compound the effect. Similarly,
there is also an improvement when the result of the inner fold
withloop is a large array, because a copy operation on this array is
prevented. The iteration based improvement is notably bigger than
the size based improvement. Both of these improvements are more
distinct when the fold withloop that is being optimised has a low
workload. If this workload gets bigger, by increasing the amount of
calculations done in the body of the loop, the effects of reducing the
loop overhead become less noticeable. However, especially if the
withloop is executed a lot, there is still a noticeable improvement.
None of the benchmark tests show a loss in performance while
using the in-place accumulator optimisation. The worst observed
performance is still as good as the performance without the optimi-
sation. While the in-place accumulator optimisation in its current
form is already helpful in many situations, there is still room for
further improvement.

Currently, it is only applicable to fold withloops of a specific form,
namely those that attempt to reuse their accumulator for their result.
By either making the optimisation applicable to more types of fold
withloops, or by rewriting fold withloops such that the optimisation
becomes applicable, more performance gains could be realised.
Another road to further improvement lies in other optimisations
that currently ignore fold-withloops because they are too different
from other withloops. The in-place accumulator optimisation brings
the memory management of affected fold-withloops more in line
with that of other types of withloops. This decreases the difference
between the withloop types, and might make it easier for other
optimisations to also affect fold withloops in the future.

REFERENCES
[1] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,

Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Du-
rand, and Jonathan Ragan-Kelley. 2019. Learning to Optimize Halide with Tree
Search and Random Programs. ACM Trans. Graph. 38, 4, Article 121 (July 2019),
12 pages. https://doi.org/10.1145/3306346.3322967

[2] Erik Barendsen and Sjaak Smetsers. 1993. Conventional and uniqueness typing
in graph rewrite systems. In Foundations of Software Technology and Theoretical
Computer Science, Rudrapatna K. Shyamasundar (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 41–51. https://doi.org/10.1007/3-540-57529-4_42

[3] Lars Bergstrom, Matthew Fluet, Mike Rainey, John Reppy, Stephen Rosen, and
Adam Shaw. 2013. Data-Only Flattening for Nested Data Parallelism. In Proceed-
ings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (Shenzhen, China) (PPoPP ’13). Association for Computing Machin-
ery, New York, NY, USA, 81–92. https://doi.org/10.1145/2442516.2442525

[4] Guy E. Blelloch andGaryW. Sabot. 1990. Compiling collection-oriented languages
onto massively parallel computers. J. Parallel and Distrib. Comput. 8, 2 (1990),
119–134. https://doi.org/10.1016/0743-7315(90)90087-6

[5] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and
Vinod Grover. 2011. Accelerating Haskell Array Codes with Multicore GPUs. In
Proceedings of the SixthWorkshop on Declarative Aspects of Multicore Programming
(Austin, Texas, USA) (DAMP ’11). Association for Computing Machinery, New
York, NY, USA, 3–14. https://doi.org/10.1145/1926354.1926358

[6] Robert Clifton-Everest, Trevor L. McDonell, Manuel M. T. Chakravarty, and
Gabriele Keller. 2017. Streaming Irregular Arrays. In Proceedings of the 10th
ACM SIGPLAN International Symposium on Haskell (Oxford, UK) (Haskell 2017).
Association for Computing Machinery, New York, NY, USA, 174–185. https:
//doi.org/10.1145/3122955.3122971

[7] Martin Elsman, Troels Henriksen, and Niels Gustav Westphal Serup. 2019. Data-
Parallel Flattening by Expansion. In Proceedings of the 6th ACM SIGPLAN Inter-
national Workshop on Libraries, Languages and Compilers for Array Programming
(Phoenix, AZ, USA) (ARRAY 2019). Association for Computing Machinery, New
York, NY, USA, 14–24. https://doi.org/10.1145/3315454.3329955

[8] A. Ernstsson, J. Ahlqvist, S. Zouzoula, and C. Kessler. 2021. SkePU 3: Portable
High-Level Programming of Heterogeneous Systems and HPC Clusters. Interna-
tional Journal of Parallel Programming (2021). https://doi.org/10.1007/s10766-
021-00704-3

[9] John T. Feo, David C. Cann, and Rodney R. Oldehoeft. 1990. A report on the
sisal language project. J. Parallel and Distrib. Comput. 10, 4 (1990), 349–366.
https://doi.org/10.1016/0743-7315(90)90035-N Data-flow Processing.

[10] Jean-Luc Gaudiot, Tom DeBoni, John Feo, Wim Böhm, Walid Najjar, and Patrick
Miller. 2001. The Sisal Project: Real World Functional Programming. Springer Berlin
Heidelberg, Berlin, Heidelberg, 45–72. https://doi.org/10.1007/3-540-45403-9_2

[11] Clemens Grelck, Sven-Bodo Scholz, and Kai Trojahner. 2005. With-Loop Scalar-
ization – Merging Nested Array Operations. In Implementation of Functional
Languages, Phil Trinder, Greg J. Michaelson, and Ricardo Peña (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 118–134. https://doi.org/10.1007/978-3-
540-27861-0_8

[12] Clemens Grelck and Kai Trojahner. 2004. Implicit Memory Management for Sac.
In Implementation and Application of Functional Languages, 16th International
Workshop, IFL’04, Clemens Grelck and Frank Huch (Eds.), Vol. 4. University of
Kiel, Institute of Computer Science and Applied Mathematics, 335–348. https:
//www.sac-home.org/_media/publications:pdf:greltrojifl04.pdf Technical Report
0408.

[13] Troels Henriksen. 2017. Design and Implementation of the Futhark Programming
Language. Ph.D. Dissertation. Department of Computer Science, Faculty of
Science, University of Copenhagen.

[14] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cos-
min E. Oancea. 2017. Futhark: Purely Functional GPU-Programming with Nested
Parallelism and in-Place Array Updates. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Barcelona,
Spain) (PLDI 2017). Association for Computing Machinery, New York, NY, USA,
556–571. https://doi.org/10.1145/3062341.3062354

[15] Paul Hudak and Adrienne Bloss. 1985. The Aggregate Update Problem in Func-
tional Programming Systems. In Proceedings of the 12th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (New Orleans, Louisiana,
USA) (POPL ’85). Association for Computing Machinery, New York, NY, USA,
300–314. https://doi.org/10.1145/318593.318660

[16] Trevor L. McDonell, ManuelM.T. Chakravarty, Gabriele Keller, and Ben Lippmeier.
2013. Optimising Purely Functional GPU Programs. Association for Computing
Machinery, New York, NY, USA, 49–60. https://doi.org/10.1145/2500365.2500595

[17] Jonathan Ragan-Kelley. 2014. Decoupling algorithms from the organization of com-
putation for high performance image processing. Ph.D. Dissertation. Massachusetts
Institute of Technology, Cambridge, MA, USA. http://hdl.handle.net/1721.1/89996

[18] Sven-Bodo Scholz. 2003. Single Assignment C: Efficient Support for High-Level
Array Operations in a Functional Setting. J. Funct. Program. 13, 6 (Nov. 2003),
1005–1059. https://doi.org/10.1017/S0956796802004458

[19] Fábio Soldado, Fernando Alexandre, and Hervé Paulino. 2016. Ex-
ecution of compound multi-kernel OpenCL computations in multi-
CPU/multi-GPU environments. Concurrency and Computation: Practice
and Experience 28, 3 (2016), 768–787. https://doi.org/10.1002/cpe.3612
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.3612

[20] Michel Steuwer. 2015. Improving programmability and performance portability on
many-core processors. Ph.D. Dissertation. University of Münster. https://www.lift-
project.org/publications/2015/steuwer15phdthesis.pdf

[21] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017. LIFT: A
functional data-parallel IR for high-performance GPU code generation. In 2017
IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
74–85. https://doi.org/10.1109/CGO.2017.7863730

[22] K. Trojahner. 2005. Implicit Memory Management for a Functional Array Processing
Language. Master’s thesis. Universität zu Lubeck. https://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.408.8837&rep=rep1&type=pdf

[23] Sebastian Ullrich and Leonardo de Moura. 2020. Counting Immutable
Beans: Reference Counting Optimized for Purely Functional Programming.
arXiv:1908.05647 [cs.PL]

[24] Gijs van Cuyck. 2021. SaC in-place accumulator optimisation.
https://gitlab.sac-home.org/gvcuyck/sac2c/-/blob/develop/src/libsac2c/
memory/fold_in_place_accumulator.c.

[25] Artjoms Šinkarovs, Hans Viessmann, and Sven-Bodo Scholz. 2021. Array
Languages Make Neural Networks Fast. In Proceedings of the 6th ACM SIG-
PLAN International Workshop on Libraries, Languages and Compilers for Array
Programming (Virtual,Canada) (ARRAY 2021). ACM, New York, NY, USA, 12.
https://doi.org/10.1145/3315454.3464312

https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1007/3-540-57529-4_42
https://doi.org/10.1145/2442516.2442525
https://doi.org/10.1016/0743-7315(90)90087-6
https://doi.org/10.1145/1926354.1926358
https://doi.org/10.1145/3122955.3122971
https://doi.org/10.1145/3122955.3122971
https://doi.org/10.1145/3315454.3329955
https://doi.org/10.1007/s10766-021-00704-3
https://doi.org/10.1007/s10766-021-00704-3
https://doi.org/10.1016/0743-7315(90)90035-N
https://doi.org/10.1007/3-540-45403-9_2
https://doi.org/10.1007/978-3-540-27861-0_8
https://doi.org/10.1007/978-3-540-27861-0_8
https://www.sac-home.org/_media/publications:pdf:greltrojifl04.pdf
https://www.sac-home.org/_media/publications:pdf:greltrojifl04.pdf
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/318593.318660
https://doi.org/10.1145/2500365.2500595
http://hdl.handle.net/1721.1/89996
https://doi.org/10.1017/S0956796802004458
https://doi.org/10.1002/cpe.3612
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.3612
https://www.lift-project.org/publications/2015/steuwer15phdthesis.pdf
https://www.lift-project.org/publications/2015/steuwer15phdthesis.pdf
https://doi.org/10.1109/CGO.2017.7863730
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.408.8837&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.408.8837&rep=rep1&type=pdf
https://arxiv.org/abs/1908.05647
https://gitlab.sac-home.org/gvcuyck/sac2c/-/blob/develop/src/libsac2c/memory/fold_in_place_accumulator.c
https://gitlab.sac-home.org/gvcuyck/sac2c/-/blob/develop/src/libsac2c/memory/fold_in_place_accumulator.c
https://doi.org/10.1145/3315454.3464312

	Abstract
	1 Introduction
	2 SaC
	3 Problem statement
	4 SaC Compiler
	4.1 Array representation
	4.2 Reference counting
	4.3 Memory instructions
	4.4 Withloop in-place computation

	5 Problem revisited
	6 In-place accumulator optimisation
	6.1 Applicability
	6.2 Explicit accumulator memory
	6.3 In-place computations

	7 Results
	8 Related work
	9 Conclusion
	References

